Computational Methods
CMSC/AMSC/MAPL 460

Polynomial Interpolation

Ramani Duraiswami,
Dept. of Computer Science
Newton Interpolation

- Consider our data set of \(n+1 \) points \(y_i = f(x_i) \) at \(x_0, x_1 \ldots x_i, \ldots x_n : x_n > x_0 \)
- Since \(p_n(x) \) is the unique polynomial \(p_n(x) \) of order \(n \), write it:

\[
p_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \ldots + b_n(x - x_0)(x - x_1) \ldots (x - x_{n-1})
\]

\[
b_0 = f(x_0)
\]

\[
b_1 = f[x_i, x_0] = \frac{f(x_i) - f(x_0)}{x_i - x_0}
\]

\[
b_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}
\]

\[\vdots\]

\[
b_n = f[x_n, x_{n-1}, \ldots, x_0] = \frac{f[x_n, \ldots, x_1] - f[x_{n-1}, \ldots, x_0]}{x_n - x_0}
\]

- \(f[x_i, x_j] \) is a first divided difference
- \(f[x_2, x_1, x_0] \) is a second divided difference, etc.
- Efficient way of adding points to the interpolation!
- Used to fit data to a table
Newton Interpolation

• Example

Let \(x_0=1, \) \(f(x_0)=-5 \); \(x_1=2, \) \(f(x_1)=-3; \)
\(x_2=3, \) \(f(x_2)=2; \) \(x_3=4, \) \(f(x_3)=4. \)

• Build divided difference table

\begin{align*}
\quad & f [x_0]=-5 \\
\quad & f [x_1]=-3 \quad f [x_0,x_1] = 2 \\
\quad & f [x_2]= 2 \quad f [x_1,x_2] = 5 \quad f[x_0,x_1,x_2] = 3/2 \\
\quad & f [x_3]= 4 \quad f[x_2,x_3] = 2 \quad f[x_1,x_2,x_3] = -3/2 \\
& f[x_0,x_1,x_2,x_3]= (3/2+3/2)/(1-4)=-1
\end{align*}

• To compute Newton form we need \(f[x_0], f[x_0,x_1], \)
\(f[x_0,x_1,x_2], f[x_0,x_1,x_2,x_3] \)
Newton form

• Interpolation

\[P(x) = f[x_0] + f[x_0, x_1] (x-x_0) + f[x_0, x_1, x_2] (x-x_0)(x-x_1) + f[x_0, x_1, x_2, x_3](x-x_0)(x-x_1)(x-x_2) \]

\[P(x) = -5 + 2(x-1) + \frac{3}{2}(x-1)(x-2) -(x-1)(x-2)(x-3) \]
Error

• Define the error term as:

\[\varepsilon_n(x) = f(x) - p_n(x) \]

• If \(f(x) \) is an \(n^{th} \) order polynomial \(p_n(x) \) is of course exact.
• Otherwise, since there is a perfect match at \(x_0, x_1, \ldots, x_n \)
• This function has at least \(n+1 \) roots at the interpolation points.

\[\therefore \varepsilon_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n)h(x) \]
Interpolation Errors

- Suppose we want to measure error at a point \(x \).
- To make polynomial go through \(x \), add to existing polynomial divided difference term.
- This is the error we make using existing polynomial:

\[
x \notin \{x_0, x_1, \ldots, x_n\}
\]

\[
\varepsilon_n(x) = f(x) - p_n(x) = f[x_0, x_1, \ldots, x_n, x] \prod_{i=0}^{n} (x - x_i)
\]

- Comparing with Taylor series:

\[
f[x_0, x_1, \ldots, x_n] = \frac{1}{n!} f^{(n)}(\xi)
\]
Interpolation Errors

\[\varepsilon_n(x) = f(x) - p_n(x) = \frac{1}{(n + 1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i) \]

\[x \in [a, b], \xi \in (a, b) \]

- Looks a bit like Taylor series remainder
- Recall, first \(n+1 \) terms of the Taylor Series is also an \(n^{th} \) degree polynomial.
Interpolation: the story so far

- Given a function at \(N \) points, find its value at other point(s)
- So far: polynomial interpolation
 - Polynomials are guaranteed to approximate any given function in an interval as accurately as we want
- Different polynomial bases
 - Monomial or Power basis
 - Newton and Lagrange basis
- For a given set of points and function values
 - Interpolating polynomial is unique
- Interpolation problem requires solution of a linear system
 - System is dense for Monomial/Power basis
 - Newton and Lagrange forms allow the direct solution of the polynomial interpolation form
 - Newton form particularly convenient to add new values
- Error for interpolation with \(n \) points is related to the value of the \((n + 1)\)th derivative of the underlying function
Polyinterp

- Lagrange interpolation code
 - x,y are points and function values
 - u are points where vector function
 v = polyinterp(x,y,u)
 n = length(x);
 v = zeros(size(u));
 for k = 1:n
 %Lagrange function k at u
 w = ones(size(u));
 for j = [1:k-1 k+1:n]
 w = (u-x(j))./(x(k)-x(j)).*w;
 end
 v = v + w*y(k);
 end

- Cost: 2 nested loops, so the cost is n^2.
 - k = 5, n = 9
 - j= [1:k-1 k+1:n]
 - j = 1 2 3 4 6 7
 8 9

\[
p_n(x) = \sum_{i=1}^{n} L_i(x) f(x_i)
\]

\[
L_i(x) = \prod_{k=1,k\neq i}^{n} \frac{(x - x_k)}{(x_i - x_k)}
\]

\[
L_i(x_j) = \delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]
Examples of polynomial interpolation

• Go to MATLAB demo
 – Vandermonde
 – Polynomial interpolation for small set
 – For larger set

• See that even for six points we have a problem
 – In between the data points, (especially in first and last subintervals), function shows excessive variation.
 – overshoots changes in the data values.
 – As a result, full-degree polynomial interpolation is hardly ever used for data and curve fitting.

• However we saw polynomial interpolation works well when degree is low
Piecewise linear interpolation

- **Simple idea**
 - Connect straight lines between data points
 - Any intermediate value read off from straight line
- **The local variable, s, is**
 - $s = x - x_k$
- **The first divided difference is**
 - $\delta_k = (y_{k+1} - y_k)/(x_{k+1} - x_k)$
- With these quantities in hand, the interpolant is
 - $L(x) = y_k + (x - x_k) \left(\frac{y_{k+1} - y_k}{x_{k+1} - x_k}\right)$
 - $= y_k + s\delta_k$
- Linear function that passes through (x_k, y_k) and (x_{k+1}, y_{k+1})
Piecewise linear interpolation

- Same format as all other interpolants
- Function diff finds difference of elements in a vector
- Find appropriate sub-interval
- Evaluate
- Jargon: x is called a “knot” for the linear spline interpolant

```matlab
function v = piecelin(x,y,u)
% PIECELIN Piecewise linear interpolation.
% v = piecelin(x,y,u) finds piecewise linear L(x)
% with L(x(j)) = y(j) and returns v(k) = L(u(k)).
% First divided difference
delta = diff(y)./diff(x);
% Find subinterval indices k so that x(k) <= u < x(k+1)
for j = 2:n-1
    k(x(j) <= u) = j;
end
% Evaluate interpolant
s = u - x(k);
v = y(k) + s.*delta(k);
```
How good is piecewise linear interpolation?

Recall from Polynomial interpolation: If $f \in C^n[I]$, then

$$f(x) - p_{n-1}(x) = \frac{(x - x_1) \ldots (x - x_n)f^{(n)}(\xi)}{n!}$$

for some point ξ in the interval containing I and x.

We need to apply this to a polynomial of degree $n - 1 = 1$, so we obtain

$$f(x) - p_1(x) = \frac{(x - x_i)(x - x_{i+1})f''(\xi)}{2}$$

• So we can reduce error by choosing small intervals where 2nd derivative is higher
 – If we can choose where to sample data
 – Do more where the “action” is more
Piecewise Cubic interpolation

• While we expect function not to vary, we expect it to also be smooth
• So we could consider piecewise interpolants of higher degree
• How many pieces of information do we need to fit a cubic between two points?
 – \(y = a + bx + cx^2 + dx^3 \)
 – 4 coefficients
 – Need 4 pieces of information
 – 2 values at end points
 – Need 2 more pieces of information
 – Derivatives?