Piecewise linear interpolation

- Simple idea
 - Connect straight lines between data points
 - Any intermediate value read off from straight line

- The local variable, s, is
 \[s = x - x_k \]

- The first divided difference is
 \[\delta_k = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} \]

- With these quantities in hand, the interpolant is
 \[L(x) = y_k + (x - x_k) \left(\frac{y_{k+1} - y_k}{x_{k+1} - x_k} \right) \]
 \[= y_k + s \delta_k \]

- Linear function that passes through (x_k, y_k) and (x_{k+1}, y_{k+1})
Piecewise linear interpolation

- Same format as all other interpolants
- Function `diff` finds difference of elements in a vector
- Find appropriate sub-interval
- Evaluate
- Jargon: x is called a “knot” for the linear spline interpolant

```matlab
function v = piecelin(x,y,u)
%PIECELIN Piecewise linear interpolation.
% v = piecelin(x,y,u) finds piecewise linear L(x)
% with L(x(j)) = y(j) and returns v(k) = L(u(k)).
% First divided difference
delta = diff(y)./diff(x);
% Find subinterval indices k so that x(k) <= u < x(k+1)
n = length(x);
k = ones(size(u));
for j = 2:n-1
    k(x(j) <= u) = j;
end
% Evaluate interpolant
s = u - x(k);
v = y(k) + s.*delta(k);
```
How good is piecewise linear interpolation?

Recall from Polynomial interpolation: If $f \in C^n[I]$, then

$$f(x) - p_{n-1}(x) = \frac{(x - x_1) \ldots (x - x_n)f^{(n)}(\xi)}{n!}$$

for some point ξ in the interval containing I and x.

We need to apply this to a polynomial of degree $n - 1 = 1$, so we obtain

$$f(x) - p_1(x) = \frac{(x - x_i)(x - x_{i+1})f''(\xi)}{2}$$

- So we can reduce error by choosing small intervals where 2nd derivative is higher
 - If we can choose where to sample data
 - Do more where the “action” is more
Piecewise Cubic interpolation

- While we expect function not to vary, we expect it to also be smooth
- So we could consider piecewise interpolants of higher degree
- How many pieces of information do we need to fit a cubic between two points?
 - \(y = a + bx + cx^2 + dx^3 \)
 - 4 coefficients
 - Need 4 pieces of information
 - 2 values at end points
 - Need 2 more pieces of information
 - Derivatives?
Cubic interpolation

- ordinary cubic polynomials: 3 continuous nonzero derivatives.
- **cubic splines**: 2 continuous nonzero derivatives.
- **Hermite cubics**: 1 continuous nonzero derivative.

- However for Hermite, the derivative needs to be specified
- Cubic splines, the derivative is not specified but enforced
Cubic splines

Notation:

- $h_{i+1} = x_{i+1} - x_i, \ i = 1, \ldots, n - 1$
- $k_{i+1} = f_{i+1} - f_i, \ i = 1, \ldots, n - 1$
- $I_{i+1} = [x_i, x_{i+1}], \ i = 1, \ldots, n - 1$

We will set $s(x)$ equal to $s_{i+1}(x)$ on interval I_{i+1}, where

$$s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i$$
Imposing the continuity conditions

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i \]

1. For \(i = 1, \ldots, n - 1, \)

\[s_{i+1}(x_i) = f_i = m_i \frac{h_{i+1}^3}{6h_{i+1}} + m_{i+1} 0 + a_i 0 + b_i . \]

Therefore,

\[b_i = f_i - m_i \frac{h_{i+1}^2}{6} . \]

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i \]
Using function continuity

2. For \(i = 1, \ldots, n - 1 \),

\[
s_{i+1}(x_{i+1}) = f_{i+1} = m_i 0 + m_{i+1} \frac{h_{i+1}^3}{6h_{i+1}} + a_i h_{i+1} + b_i .
\]

Therefore,

\[
a_i = \frac{f_{i+1} - b_i - m_{i+1} \frac{h_{i+1}^2}{6}}{h_{i+1}},
\]

so

\[
a_i = \frac{f_{i+1} - f_i}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i)
\]

So we have formulas for all of the \(a \)s and \(b \)s in terms of the \(m \)s, and we have ensured that \(s \) is continuous.
First Derivative continuity

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i \]

3. For \(i = 1, \ldots, n - 1, \)

\[s'_{i+1}(x) = -\frac{m_i}{2h_{i+1}}(x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}}(x - x_i)^2 + a_i. \]

Therefore, \(s'_{i+1}(x_i) = s'_i(x_i) \) if

\[-\frac{m_i}{2h_{i+1}}h_{i+1}^2 + a_i = \frac{m_i}{2h_i}h_i^2 + a_{i-1}, i = 2, \ldots, n - 1. \]

Since \(a_i = \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6}(m_{i+1} - m_i), \) we have

\[-\frac{m_i}{2}h_{i+1} + \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6}(m_{i+1} - m_i) = \frac{m_i}{2}h_i + \frac{k_i}{h_i} - \frac{h_i}{6}(m_i - m_{i-1}). \]
Second derivative continuity

\[s'_{i+1}(x) = -\frac{m_i}{2h_{i+1}}(x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}}(x - x_i)^2 + a_i. \]

4. For \(i = 1, \ldots, n - 1, \)

\[s''_{i+1}(x) = +\frac{m_i}{h_{i+1}}(x_{i+1} - x) + \frac{m_{i+1}}{h_{i+1}}(x - x_i). \]

Therefore, \(s''_{i+1}(x_i) = m_i = s''_i(x_i) \) for \(i = 2, \ldots, n - 1, \) so continuity of this derivative is built into the representation!

Note that

\[s''(x_1) = s_1(x_1) = m_1 \]
\[s''(x_n) = s_n(x_n) = m_n \]
Solving for m

Our function s is an **interpolating cubic spline** if, for $i = 2, \ldots, n - 1$,

$$-rac{m_i}{2}h_{i+1} + \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6}(m_{i+1} - m_i) = \frac{m_i}{2}h_i + \frac{k_i}{h_i} - \frac{h_i}{6}(m_i - m_{i-1}).$$

and thus the parameters m_i, which are second derivatives at the knots, can be determined from the linear equations

$$\frac{h_i}{6}m_{i-1} + \frac{h_{i+1} + h_i}{3}m_i + \frac{h_{i+1}}{6}m_{i+1} = -\frac{k_i}{h_i} + \frac{k_{i+1}}{h_{i+1}} \equiv -\gamma_i + \gamma_{i+1}.$$

If we set $c_i = h_i/6$, then we can write the system as

$$\begin{bmatrix}
 c_2 & 2(c_2 + c_3) & c_3 \\
 c_3 & 2(c_3 + c_4) & c_4 \\
 \vdots & \vdots & \vdots \\
 c_{n-1} & 2(c_{n-1} + c_n) & c_n
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 \vdots \\
 m_n
\end{bmatrix}
= \begin{bmatrix}
 -\gamma_2 + \gamma_3 \\
 -\gamma_3 + \gamma_4 \\
 \vdots \\
 -\gamma_{n-1} + \gamma_n
\end{bmatrix}$$

- $n-2$ equations in n unknowns
• Need to add two conditions
• Usually at end points

Common choices of end conditions

• The **natural** cubic spline interpolant: \(s''(a) = s''(b) = 0 \)

• The **periodic** cubic spline interpolant: \(s^{(k)}(a) = s^{(k)}(b), \ k = 0, 1, 2 \).

• The **complete** cubic spline interpolant: \(s'(a) \) and \(s'(b) \) given.

• The **not-a-knot** cubic spline interpolant: make the third derivative of \(s \) continuous at \(x_2 \) and \(x_{n-1} \) so that these points are not knots.
Solving a cubic spline system

• Assume natural splines

\[
\begin{bmatrix}
2(c_2 + c_3) & c_3 \\
c_3 & 2(c_3 + c_4) & c_4 \\
\vdots & \vdots & \ddots & \ddots \\
c_{n-1} & 2(c_{n-1} + c_n)
\end{bmatrix}
\begin{bmatrix}
m_2 \\
m_3 \\
\vdots \\
m_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
-\gamma_2 + \gamma_3 \\
-\gamma_3 + \gamma_4 \\
\vdots \\
-\gamma_{n-1} + \gamma_n
\end{bmatrix}
\]

• This is a tridiagonal system

• Can be solved in \(O(n) \) operations

• How?
 – Do LU and solve
 – With tridiagonal structure requires \(O(7n) \) operations
Interpolation: wrap up

- Interpolation: Given a function at N points, find its value at other point(s)
- Polynomial interpolation
 - Monomial, Newton and Lagrange forms
- Piecewise polynomial interpolation
 - Linear, Hermite cubic and Cubic Splines
- Polynomial interpolation is good at low orders
- However, higher order polynomials “overfit” the data and do not predict the curve well in between interpolation points
- Cubic Splines are quite good in smoothly interpolating data