Computing interpolants by hand

- Suppose we have data at n points and we have fit a polynomial.
- How can we do this fit efficiently?
- Fit for one point is $y = y_1$.
- Fit for two points can be written as $y = a(x-x_1) + b(x-x_2)$.
- Fit for three points can be written as
 \[y = a(x-x_1)(x-x_2) + b(x-x_1)(x-x_3) + c(x-x_2)(x-x_3) \]
- And so on …
- Advantage: each coefficient can be calculated independent of others.
 - Why?
 - What is the form of the coefficient computed?
Lagrange and Newton forms for interpolations

- Lagrange and Newton modified these forms further to conveniently compute polynomials
Lagrange Polynomials

- Summation of terms, such that:
 - Equal to \(f() \) at a data point.
 - Equal to zero at all other data points.
 - Each term is a \(n^{th} \)-degree polynomial

\[
p_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)
\]

\[
L_i(x) = \prod_{k=0, k\neq i}^{n} \frac{(x - x_k)}{(x_i - x_k)}
\]

\[
L_i(x_j) = \delta_{ij} = \begin{cases}
 1 & i = j \\
 0 & i \neq j
\end{cases}
\]
Newton Interpolation

- Consider our data set of \(n+1 \) points \(y_i = f(x_i) \) at \(x_0, x_1, \ldots, x_i, \ldots, x_n : x_n > x_0 \)
- Since \(p_n(x) \) is the unique polynomial \(p_n(x) \) of order \(n \), write it:

\[
p_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \ldots + b_n(x - x_0)(x - x_1)(x - x_n)(x - x_{n-1})
\]

\[
b_0 = f(x_0)
\]

\[
b_1 = f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}
\]

\[
b_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}
\]

\[\vdots\]

\[
b_n = f[x_n, x_{n-1}, \ldots, x_0] = \frac{f[x_n, \ldots, x_1] - f[x_{n-1}, \ldots, x_0]}{x_n - x_0}
\]

- \(f[x_i, x_j] \) is a first divided difference
- \(f[x_2, x_1, x_0] \) is a second divided difference, etc.
- Efficient way of adding points to the interpolation!
- Used to fit data to a table
Newton Interpolation

- **Example**
- Let $x_0=1$, $f(x_0)=-5$; $x_1=2$, $f(x_1)=-3$; $x_2=3$, $f(x_2)=2$; $x_3=4$, $f(x_3)=4$.
- Build divided difference table
 - $f[x_0]=-5$
 - $f[x_1]=-3$ $f[x_0,x_1]=2$
 - $f[x_2]=2$ $f[x_1,x_2]=5$ $f[x_0,x_1,x_2]=3/2$
 - $f[x_3]=4$ $f[x_2,x_3]=2$ $f[x_1,x_2,x_3]=-3/2$
 - $f[x_0,x_1,x_2,x_3]=(3/2+3/2)/(1-4)=-1$
- To compute Newton form we need $f[x_0]$, $f[x_0,x_1]$, $f[x_0,x_1,x_2]$, $f[x_0,x_1,x_2,x_3]$
Newton form

- Interpolation

\[P(x) = f[x_0] + f[x_0, x_1] \ (x-x_0) + f[x_0, x_1, x_2] \ (x-x_0)(x-x_1) + f[x_0, x_1, x_2, x_3] \ (x-x_0)(x-x_1)(x-x_2) \]

\[P(x) = -5 + 2 \ (x-1) + \frac{3}{2} \ (x-1)(x-2) - (x-1)(x-2)(x-3) \]
Error

- Define the error term as:

\[\varepsilon_n(x) = f(x) - p_n(x) \]

- If \(f(x) \) is an \(n^{th} \) order polynomial \(p_n(x) \) is of course exact.
- Otherwise, since there is a perfect match at \(x_0, x_1, \ldots, x_n \)
- This function has at least \(n+1 \) roots at the interpolation points.

\[\therefore \varepsilon_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n)h(x) \]
Interpolation Errors

• Suppose we want to measure error at a point \(x \)
• To make polynomial go through \(x \), add to existing polynomial divided difference term.
• This is the error we make using existing polynomial

\[
x \not\in \{x_0, x_1, \ldots x_n\}
\]

\[
\varepsilon_n(x) = f(x) - p_n(x) = f[x_0, x_1, \ldots x_n, x] \prod_{i=0}^{n} (x - x_i)
\]

• Comparing with Taylor series

\[
f[x_0, x_1, \ldots x_n] = \frac{1}{n!} f^{(n)}(\xi)
\]
Interpolation Errors

\[\varepsilon_n(x) = f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i) \]

\[x \in [a, b], \xi \in (a, b) \]

• Looks a bit like Taylor series remainder
• Recall, first \(n+1 \) terms of the Taylor Series is also an \(n^{th} \) degree polynomial.
Efficient polynomial evaluation

- Given a polynomial in power form how many operations does it take to evaluate it?
- \(a_p x^p + \cdots + a_1 x + a_0 \)

Horner’s Rule

- Horner’s rule (Horner, 1819) *recursively* evaluates the polynomial \(a_p x^p + \cdots + a_1 x + a_0 \) as:
 \[
 (((\cdots(a_p x + a_{p-1})x+\cdots)x + a_1)x + \cdots + a_0.
 \]
- costs \(p \) multiplications and \(p \) additions, no extra storage.
 Reduces complexity from \(O(p^2) \) to \(O(p) \)
Interpolation: the story so far

• Given a function at \(N \) points, find its value at other point(s)
• So far: polynomial interpolation
 – Polynomials are guaranteed to approximate any given function in an interval as accurately as we want
• Different polynomial bases
 – Monomial or Power basis
 – Newton and Lagrange basis
• For a given set of points and function values
 – interpolating polynomial is unique
• Interpolation problem requires solution of a linear system
 – System is dense for Monomial/Power basis
 – Newton and Lagrange forms allow the direct solution of the polynomial interpolation form
 – Newton form particularly convenient to add new values
• Error for interpolation with \(n \) points is related to the value of the \((n+1)^{th}\) derivative of the underlying function
Polyinterp

- Lagrange interpolation code
 - \(x, y \) are points and function values
 - \(u \) are points where vector function \(v = \text{polyinterp}(x, y, u) \)

\[
n = \text{length}(x);
v = \text{zeros}(\text{size}(u));
\text{for } k = 1:n
\%
\text{Lagrange function } k \text{ at } u
w = \text{ones}(\text{size}(u));
\text{for } j = [1:k-1 \ k+1:n]
 w = (u-x(j))./(x(k)-x(j)).*w;
\text{end}
v = v + w*y(k);
\text{end}
\]

- Cost: 2 nested loops, so the cost is \(n^2 \).

- \(k = 5, \ n = 9 \)
- \(j = [1:5-1 \ 5+1:9] \)
- \(\text{j = 1} \ 2 \ 3 \ 4 \ 6 \ 7 \ 8 \ 9 \)

\[
p_n(x) = \sum_{i=1}^{n} L_i(x)f(x_i)
\]

\[
L_i(x) = \prod_{k=1,k\neq i}^{n} \frac{x-x_k}{x_i-x_k}
\]

\[
L_i(x_j) = \delta_{ij} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}
\]
Examples of polynomial interpolation

• Go to MATLAB demo
 – Vandermonde
 – Polynomial interpolation for small set
 – For larger set

• See that even for six points we have a problem
 – In between the data points, (especially in first and last subintervals), function shows excessive variation.
 – overshoots changes in the data values.
 – As a result, full-degree polynomial interpolation is hardly ever used for data and curve fitting.

• However we saw polynomial interpolation works well when degree is low
Piecewise linear interpolation

- Simple idea
 - Connect straight lines between data points
 - Any intermediate value read off from straight line
- The local variable, s, is
 - $s = x - x_k$
- The first divided difference is
 - $\delta_k = (y_{k+1} - y_k)/(x_{k+1} - x_k)$
- With these quantities in hand, the interpolant is
 - $L(x) = y_k + (x - x_k) \frac{(y_{k+1} - y_k)}{(x_{k+1} - x_k)}$
 - $= y_k + s\delta_k$
- Linear function that passes through (x_k, y_k) and (x_{k+1}, y_{k+1})
Piecewise linear interpolation

- Same format as all other interpolants
- Function `diff` finds difference of elements in a vector
- Find appropriate sub-interval
- Evaluate
- Jargon: x is called a "knot" for the linear spline interpolant

function $v = \text{piecelin}(x,y,u)$

```matlab
function v = piecelin(x,y,u)
%PIECELIN Piecewise linear interpolation.
% v = piecelin(x,y,u) finds piecewise linear L(x)
% with L(x(j)) = y(j) and returns v(k) = L(u(k)).
% First divided difference
delta = diff(y)./diff(x);
% Find subinterval indices $k$ so that $x(k) \leq u < x(k+1)$
n = length(x);
k = ones(size(u));
for j = 2:n-1
    k(x(j) <= u) = j;
end
% Evaluate interpolant
s = u - x(k);
v = y(k) + s.*delta(k);
```
How good is piecewise linear interpolation?

Recall from Polynomial interpolation: If \(f \in C^n[I] \), then

\[
f(x) - p_{n-1}(x) = \frac{(x - x_1) \ldots (x - x_n) f^{(n)}(\xi)}{n!}
\]

for some point \(\xi \) in the interval containing \(I \) and \(x \).

We need to apply this to a polynomial of degree \(n - 1 = 1 \), so we obtain

\[
f(x) - p_1(x) = \frac{(x - x_i)(x - x_{i+1}) f''(\xi)}{2}
\]

• So we can reduce error by choosing small intervals where 2\(^{nd}\) derivative is higher
 – If we can choose where to sample data
 – Do more where the “action” is more