Computational Methods
CMSC/AMSC/MAPL 460

Piecewise Polynomial Interpolation

Ramani Duraiswami,
Dept. of Computer Science
Interpolation: the story so far

- Given a function at N points, find its value at other point(s)
- Last class: polynomial interpolation
 - Polynomials are guaranteed to approximate any given function in an interval as accurately as we want
- Different polynomial bases
 - Monomial or Power basis
 - Newton and Lagrange basis
- For a given set of points and function values
 - Interpolating polynomial is unique
- Interpolation problem requires solution of a linear system
 - System is dense for Monomial/Power basis
 - Newton and Lagrange forms allow the direct solution of the polynomial interpolation form
 - Newton form particularly convenient to add new values
- Error for interpolation with n points is related to the value of the $(n+1)^{th}$ derivative of the underlying function
Polyinterp

- Lagrange interpolation code
 - x,y are points and function values
 - u are points where vector
 function v = polyinterp(x,y,u)
 n = length(x);
 v = zeros(size(u));
 for k = 1:n
 %Lagrange function k at u
 w = ones(size(u));
 for j = [1:k-1 k+1:n]
 w = (u-x(j))./(x(k)-x(j)).*w;
 end
 v = v + w*y(k);
 end

- Cost: 2 nested loops, so the
cost is n^2.
 - $k = 5, n = 9$
 - $j = [1:k-1, k+1:n]$
 - $j = 1 2 3 4 6 7$
 - 8 9
Examples of polynomial interpolation

• Go to MATLAB demo
 – Vandermonde
 – Polynomial interpolation for small set
 – For larger set

• See that even for six points we have a problem
 – In between the data points, (especially in first and last subintervals), function shows excessive variation.
 – overshoots changes in the data values.
 – As a result, full-degree polynomial interpolation is hardly ever used for data and curve fitting.

• However we saw polynomial interpolation works well when degree is low
Piecewise linear interpolation

• Simple idea
 – Connect straight lines between data points
 – Any intermediate value read off from straight line

• The *local variable*, s, is

 $s = x - x_k$

• The *first divided difference* is

 $\delta_k = (y_{k+1} - y_k) / (x_{k+1} - x_k)$

• With these quantities in hand, the interpolant is

 $L(x) = y_k + (x - x_k) \frac{(y_{k+1} - y_k)}{(x_{k+1} - x_k)}$

 $= y_k + s \delta_k$

• Linear function that passes through (x_k, y_k) and (x_{k+1}, y_{k+1})
Piecewise linear interpolation

- Same format as all other interpolants
- Function diff finds difference of elements in a vector
- Find appropriate sub-interval
- Evaluate
- Jargon: \textit{x} is called a “knot” for the linear spline interpolant

function v = piecelin(x,y,u)
%PIECELIN Piecewise linear interpolation.
% v = piecelin(x,y,u) finds piecewise linear \(L(x) \)
% with \(L(x(j)) = y(j) \) and returns \(v(k) = L(u(k)) \).
% First divided difference
delta = diff(y)./diff(x);
% Find subinterval indices \(k \) so that \(x(k) \leq u < x(k+1) \)
 n = length(x);
 k = ones(size(u));
 for j = 2:n-1
 k(x(j) <= u) = j;
 end
% Evaluate interpolant
 s = u - x(k);
 v = y(k) + s.*delta(k);
How good is piecewise linear interpolation?

Recall from Polynomial interpolation: If \(f \in C^n[I] \), then

\[
f(x) - p_{n-1}(x) = \frac{(x - x_1) \ldots (x - x_n) f^{(n)}(\xi)}{n!}
\]

for some point \(\xi \) in the interval containing \(I \) and \(x \).

We need to apply this to a polynomial of degree \(n - 1 = 1 \), so we obtain

\[
f(x) - p_1(x) = \frac{(x - x_i)(x - x_{i+1}) f''(\xi)}{2}
\]

• So we can reduce error by choosing small intervals where 2\(^{nd}\) derivative is higher
 - If we can choose where to sample data
 - Do more where the “action” is more
Piecewise Cubic interpolation

• While we expect function not to vary, we expect it to also be smooth
• So we could consider piecewise interpolants of higher degree
• How many pieces of information do we need to fit a cubic between two points?
 – \(y = a + bx + cx^2 + dx^3 \)
 – 4 coefficients
 – Need 4 pieces of information
 – 2 values at end points
 – Need 2 more pieces of information
 – Derivatives?
Cubic interpolation

- ordinary cubic polynomials: 3 continuous nonzero derivatives.
- **cubic splines**: 2 continuous nonzero derivatives.
- **Hermite cubics**: 1 continuous nonzero derivative.

- However for Hermite, the derivative needs to be specified
- Cubic splines, the derivative is not specified but enforced
Hermite Cubic interpolation

- Define the following interpolant

- Called Hermite or “osculatory” interpolant

- Will work if we know function and derivative values

- Often only function values are known

\[\delta_k = \frac{y_{k+1} - y_k}{h_k} \]

Let \(d_k \) denote the slope of the interpolant at \(x_k \).

\[d_k = P'(x_k) \]

terms of local variables \(s = x - x_k \) and \(h = h_k \)

\[P(x) = \frac{3hs^2 - 2s^3}{h^3}y_{k+1} + \frac{h^3 - 3hs^2 + 2s^3}{h^3}y_k + \frac{s^2(s - h)}{h^2}d_{k+1} + \frac{s(s - h)^2}{h^2}d_k \]

\[P(x_k) = y_k, \; P(x_{k+1}) = y_{k+1} \]

\[P'(x_k) = d_k, \; P'(x_{k+1}) = d_{k+1} \]
How do we specify 2 additional conditions?

- We don’t know derivatives
- But we can require that they be continuous!
- Requiring first derivative be continuous provides one relation at a “knot”
- Requiring second derivative be continuous provides one relation at a knot
Cubic splines

Notation:

- \(h_{i+1} = x_{i+1} - x_i, \ i = 1, \ldots, n - 1 \)
- \(k_{i+1} = f_{i+1} - f_i, \ i = 1, \ldots, n - 1 \)
- \(I_{i+1} = [x_i, x_{i+1}], \ i = 1, \ldots, n - 1 \)

We will set \(s(x) \) equal to \(s_{i+1}(x) \) on interval \(I_{i+1} \), where

\[
s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i (x - x_i) + b_i
\]
Imposing the continuity conditions

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i \]

1. For \(i = 1, \ldots, n - 1, \)

\[s_{i+1}(x_i) = f_i = m_i \frac{h_{i+1}^3}{6h_{i+1}} + m_{i+1}0 + a_i0 + b_i. \]

Therefore,

\[b_i = f_i - m_i \frac{h_{i+1}^2}{6}. \]

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i \]
Using function continuity

2. For \(i = 1, \ldots, n - 1, \)

\[
s_{i+1}(x_{i+1}) = f_{i+1} = m_i 0 + m_{i+1} \frac{h_{i+1}^3}{6h_{i+1}} + a_i h_{i+1} + b_i.
\]

Therefore,

\[
a_i = \frac{f_{i+1} - b_i - m_{i+1} \frac{h_{i+1}^2}{6}}{h_{i+1}},
\]

so

\[
a_i = \frac{f_{i+1} - f_i}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i)
\]

So we have formulas for all of the \(a \)s and \(b \)s in terms of the \(m \)s, and we have ensured that \(s \) is continuous.
First Derivative continuity

\[s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i (x - x_i) + b_i \]

3. For \(i = 1, \ldots, n - 1, \)

\[s'_{i+1}(x) = -\frac{m_i}{2h_{i+1}} (x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}} (x - x_i)^2 + a_i . \]

Therefore, \(s'_{i+1}(x_i) = s'_i(x_i) \) if

\[-\frac{m_i}{2h_{i+1}} h_{i+1}^2 + a_i = \frac{m_i}{2h_i} h_i^2 + a_{i-1}, \ i = 2, \ldots, n - 1. \]

Since \(a_i = \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i), \) we have

\[-\frac{m_i}{2} h_{i+1} + \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i) = \frac{m_i}{2} h_i + \frac{k_i}{h_i} - \frac{h_i}{6} (m_i - m_{i-1}). \]
Second derivative continuity

\[s'_{i+1}(x) = -\frac{m_i}{2h_{i+1}}(x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}}(x - x_i)^2 + a_i. \]

4. For \(i = 1, \ldots, n - 1, \)

\[s''_{i+1}(x) = +\frac{m_i}{h_{i+1}}(x_{i+1} - x) + \frac{m_{i+1}}{h_{i+1}}(x - x_i). \]

Therefore, \(s''_{i+1}(x_i) = m_i = s''_i(x_i) \) for \(i = 2, \ldots, n - 1, \) so continuity of this derivative is built into the representation!

Note that

\[s''(x_1) = s_1(x_1) = m_1 \]
\[s''(x_n) = s_n(x_n) = m_n \]
Solving for m

Our function s is an **interpolating cubic spline** if, for $i = 2, \ldots, n - 1$,

$$
-\frac{m_i}{2} h_{i+1} + \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i) = \frac{m_i}{2} h_i + \frac{k_i}{h_i} - \frac{h_i}{6} (m_i - m_{i-1}).
$$

and thus the parameters m_i, which are second derivatives at the knots, can be determined from the linear equations

$$
\frac{h_i}{6} m_{i-1} + \frac{h_{i+1} + h_i}{3} m_i + \frac{h_{i+1}}{6} m_{i+1} = -\frac{k_i}{h_i} + \frac{k_{i+1}}{h_{i+1}} \equiv -\gamma_i + \gamma_{i+1}.
$$

If we set $c_i = h_i/6$, then we can write the system as

$$
\begin{bmatrix}
c_2 & 2(c_2 + c_3) & c_3 \\
c_3 & 2(c_3 + c_4) & c_4 \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
c_{n-1} & 2(c_{n-1} + c_n) & c_n
\end{bmatrix}
\begin{bmatrix}
m_1 \\
m_2 \\
\vdots \\
\vdots \\
m_n
\end{bmatrix}
=
\begin{bmatrix}
-\gamma_2 + \gamma_3 \\
-\gamma_3 + \gamma_4 \\
\vdots \\
\vdots \\
-\gamma_{n-1} + \gamma_n
\end{bmatrix}
$$

- **$n-2$ equations in n unknowns**
• Need to add two conditions
• Usually at end points

Common choices of end conditions

• The **natural** cubic spline interpolant: \(s''(a) = s''(b) = 0 \)
• The **periodic** cubic spline interpolant: \(s^{(k)}(a) = s^{(k)}(b), \ k = 0, 1, 2. \)
• The **complete** cubic spline interpolant: \(s'(a) \) and \(s'(b) \) given.
• The **not-a-knot** cubic spline interpolant: make the third derivative of \(s \) continuous at \(x_2 \) and \(x_{n-1} \) so that these points are not knots.
Solving a cubic spline system

• Assume natural splines

\[
\begin{bmatrix}
2(c_2 + c_3) & c_3 & \\
c_3 & 2(c_3 + c_4) & c_4 \\
\vdots & \vdots & \ddots \\
c_{n-1} & 2(c_{n-1} + c_n) & \\
\end{bmatrix}
\begin{bmatrix}
m_2 \\
m_3 \\
\vdots \\
m_{n-1} \\
\end{bmatrix}
=
\begin{bmatrix}
-\gamma_2 + \gamma_3 \\
-\gamma_3 + \gamma_4 \\
\vdots \\
-\gamma_{n-1} + \gamma_n \\
\end{bmatrix}
\]

• This is a tridiagonal system
• Can be solved in $O(n)$ operations
• How?
 – Do LU and solve
 – With tridiagonal structure requires $O(7n)$ operations