Computational Methods
CMSC/AMSC/MAPL 460

Wrap up Linear Systems, LU Decomposition,

Ramani Duraiswami,
Dept. of Computer Science
Gaussian Elimination

- Zero elements of first column below 1st row
 - multiplying 1st row by 0.3 and add to 2nd row
 - multiplying 1st row by -0.5 and add to 3rd row
 - Results in

- Zero elements of first column below 2nd row
 - Swap rows
 - Multiply 2nd row by 0.04 and add to 3rd
Pivoting

- Every step involves dividing by diagonal in the current row.
- Algorithm – should work for general data.
- Remember: whenever an algorithm calls for division, we need to check if the entry being divided by can become zero (or almost zero).
- Consider
- Here the system has solution.
- Yet division by zero would occur!
- Fix: rearrange the system
- Element by which we divide is called “Pivot element”
- Changing the pivot element is called “pivoting”
- Partial Pivoting and Full Pivoting

\[
\begin{bmatrix}
0 & 4 & 4 \\
4 & 0 & 2 \\
2 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
4 \\
2 \\
0
\end{bmatrix}
\]

\[
x = [1, 2, -1]^T
\]
Partial Pivoting

• Interchange rows below the current row to ensure that the largest element by magnitude is in the current row
• Also possible to do column interchanges in addition to row interchanges (called full pivoting)
Solution

- Start from last equation which can be solved by division
- Next substitute in the previous line and continue
- This describes the way to do the algorithm by hand
- How to represent it using matrices?
- Also, how do we solve another system that has the same matrix?
 - Upper triangular matrix we end up with will be the same, but the sequence of operations on the r.h.s needs to be repeated
\[LU = PA \]

\[
L = \begin{pmatrix}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
-0.3 & -0.04 & 1
\end{pmatrix}
\quad
U = \begin{pmatrix}
10 & -7 & 0 \\
0 & 2.5 & 5 \\
0 & 0 & 6.2
\end{pmatrix}
\quad
P = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

- Identify the elements of \(L \) and \(P \)?
- \(L \) has the multipliers we used in the elimination steps
- \(P \) has a record of the row swaps we did to avoid dividing by small numbers
- In fact we can write each step of Gaussian elimination in matrix form

\[
U = M_{n-1}P_{n-1} \cdots M_2P_2M_1P_1A
\]

\[
L_1L_2 \cdots L_{n-1}U = P_{n-1} \cdots P_2P_1A
\]
$$A = \begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \quad L = L_1L_2 \cdots L_{n-1} \quad P = P_{n-1} \cdots P_2P_1$$

the matrices defined during the elimination are

$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0.3 & 1 & 0 \\ -0.5 & 0 & 1 \end{pmatrix} \quad L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & 0 & 1 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.04 & 1 \end{pmatrix}, L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.04 & 1 \end{pmatrix},$$
Solving a system with the LU decomposition

\[Ax = b \]

\[LU = PA \]

\[P^T LUx = b \]

\[L[Ux] = Pb \]

Solve \(Ly = Pb \)

Then \(Ux = y \)
• Book keeping to account for changes in a permutation matrix
• (If we did full pivoting we need two permutation matrices to account in addition for column interchanges)
• We can represent the permutation matrix as a vector
 – Convenient in matlab
How good are the answers given by LU?

• In general we cannot determine the exact answer.
• Rather we will determine answer (possibly incorrect), and use it to find how poorly it does in predicting the right hand side
• Difference in r.h.s is the “residual” and is a measure of the error

\[r \equiv b - Ax \]

\[
= \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \\
= \begin{bmatrix} 0 \\ \delta \end{bmatrix}.
\]

Suppose \(\delta < 0.5 \epsilon_{mach} \).

\[
\begin{bmatrix} \delta & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

; system without pivoting, we’ll get

\[
\begin{bmatrix} \delta & 1 \\ 0 & -1/\delta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/\delta \end{bmatrix}
\]

\[x_2 = 1, \ x_1 = 0. \]

True solution

\[x = \begin{bmatrix} -\frac{1}{1-\delta} \\ \frac{1}{1-\delta} \end{bmatrix} \]

With pivoting we get

\[
\begin{bmatrix} 1 & 1 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[x_2 = 1, \ x_1 = -1. \]
• Recall “backward error analysis”
• Determine region in “problem space” where the problem we solved lies
• Here the problem we solved is $Ax = b-r$
• Theorem
 – Gauss elimination with partial pivoting produces small residuals
• Next question:
 – Does a small residue mean a small forward error?
 – Here it did
Example 2

- Compute via GE with partial pivoting
 Let's assume 3-digit decimal arithmetic.

 \[
 \begin{bmatrix}
 .780 & .563 \\
 .913 & .659 \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 .217 \\
 .254 \\
 \end{bmatrix}
 \]

 If we compute the solution with pivoting, we obtain

 \[
 x = \begin{bmatrix}
 -.443 \\
 1.000 \\
 \end{bmatrix},
 r = \begin{bmatrix}
 -.000460 \\
 -.000541 \\
 \end{bmatrix}
 \]

- However true solution is \([1.000 \ -1.000]^t\)
- Residual was small, but error is large!
- Why?
- Recall condition number
Condition Number of a Matrix

A measure of how close a matrix is to singular

$$\text{cond}(A) = \kappa(A) = \|A\| \cdot \|A^{-1}\|$$

$$= \frac{\text{maximum stretch}}{\text{maximum shrink}} = \frac{\max \lambda_i}{\min \lambda_i}$$

- $\text{cond}(I) = 1$
- $\text{cond}(\text{singular matrix}) = \infty$
- So even though residual was small, error was multiplied by the condition number, and was significant
Look at LU code

%LU Triangular factorization
% [L,U,p] = lutx(A) produces a unit lower triangular
% matrix L, an upper triangular matrix U, and a
% permutation vector p, so that L*U = A(p,:).

• Initialize
 – Matrix size
 – Permutation vector

\[
\begin{align*}
 [n,n] &= \text{size}(A); \\
p &= (1:n),
\end{align*}
\]

\[
\text{for } k = 1:n-1
\]

% Find largest element below diagonal in k-th column
\[
[r,m] = \text{max}(\text{abs}(A(k:n,k)));
\]

\[
m = m + k - 1;
\]

% Skip elimination if column is zero
\[
\text{if } (A(m,k) \approx 0)
\]

% Swap pivot row
\[
\text{if } (m \approx k)
\]

\[
A([k \ m],:) = A([m \ k],:); \\
p([k \ m]) = p([m \ k]);
\]

end

• Second output argument to max is index of max element
• If max element is zero then we need not eliminate
• Exchange rows
• update permutation vector
Look at LU code

- Multipliers for each row below diagonal
 - Note multipliers are stored in the lower triangular part of A
- Vectorized update
 - $A(i,k)A(k,j)$ multiplies column vector by row vector to produce a square, rank 1 matrix of order n-k.
 - Matrix is then subtracted from the submatrix of the same size in the bottom right corner of A.
 - In a programming language without vector and matrix operations, this update of a portion of A would be done with doubly nested loops on i and j.
 - Cost is n^2 and done n times for a total cost of n^3
- Computes decomposition in the matrix A itself
- Here they are separated, but when memory is important it can be left there

% Compute multipliers
i = k+1:n;
A(i,k) = A(i,k)/A(k,k);

% Update the remainder of the matrix
j = k+1:n;
A(i,j) = A(i,j) - A(i,k)*A(k,j);
end

end

% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);
Code to solve linear system using LU

- In Matlab the backslash operator can be used to solve linear systems.
- For square matrices it employs LU or special variants
 - Lower triangular
 - Upper triangular
 - symmetric
- Symmetric LU is called Cholesky decomposition
 - $A = LL^T$
 - Upper and lower triangular are equal (transposes)
 - If matrix not positive-definite go to regular solution

```matlab
function x = bslashtx(A,b) % BSLASHTX Solve linear system (backslash)
% x = bslashtx(A,b) solves A*x = b

[n,n] = size(A);
if isequal(triu(A,1),zeros(n,n)) % Lower triangular
    x = forward(A,b);
    return
elseif isequal(tril(A,-1),zeros(n,n)) % Upper triangular
    x = backsubs(A,b);
    return
elseif isequal(A,A')
    [R,fail] = chol(A);
    if ~fail % Positive definite
        y = forward(R',b);
        x = backsubs(R,y);
        return
    end
end
end
```
Code continues

Call LU

- Solve $y = Lb$
- Solve $x = Uy$

```matlab
function x = forward(L, x)
% FORWARD. Forward elimination.
% For lower triangular $L$, $x = forward(L, b)$ solves $L \times x = b$.
[n, n] = size(L);
for k = 1:n
    j = 1:k-1;
    x(k) = (x(k) - L(k, j) * x(j)) / L(k, k);
end

function x = backsubs(U, x)
% BACKSUBS. Back substitution.
% For upper triangular $U$, $x = backsubs(U, b)$ solves $U \times x = b$.
[n, n] = size(U);
for k = n:-1:1
    j = k+1:n;
    x(k) = (x(k) - U(k, j) * x(j)) / U(k, k);
end
```

% Triangular factorization
[L, U, p] = lutx(A);

% Permutation and forward elimination
y = forward(L, b(p));
x = backsubs(U, y);
LU Wrap up

- Operations count: \(n^3/3 \) multiplications.

- Matlab’s `backslash` operator solves linear systems, using LU, without forming the inverse:

\[
x = A \ \backslash \ b;
\]

- If you have \(k \) right-hand sides involving the same matrix, store them as columns in a matrix \(B \) of size \(n \times k \) and then solve using, for example

\[
X = A \ \backslash \ B;
\]

What about sparsity?

If \(A \) has lots of zeros, we would like our algorithms to take advantage of this, and not to ruin the structure by introducing many nonzeros.

If \(A \) is initialized as a sparse matrix in Matlab, then backslash and the lu algorithm both try to preserve sparsity.