Computational Methods
CMSC/AMSC/MAPL 460

Vectors, Matrices, Linear Systems, LU Decomposition,

Ramani Duraiswami,
Dept. of Computer Science
Class Outline

• Much of scientific computation involves solution of linear equations
 – Even non-linear problems are solved by linearization
• Some interpretations of matrices and vectors
• Matrix vector multiplication and complexity
 – Memory organization and access of elements
• Identity, Inverse, Singular Matrices
• Permutation, Lower and Upper Triangular Matrices
Vectors

• Ordered set of numbers: (1,2,3,4)
• Example: \((x,y,z)\) coordinates of a point in space.
• Line joining the origin of coordinates to the point
• Vectors usually indicated with bold lower case letters. Scalars with lower case

• Operations with vectors:
 – Addition operation \(\mathbf{u} + \mathbf{v}\), with:
 • Identity \(\mathbf{0}\) \quad \mathbf{v} + \mathbf{0} = \mathbf{v}
 • Inverse - \quad \mathbf{v} + (-\mathbf{v}) = \mathbf{0}

 – Scalar multiplication:
 • Distributive rule: \(\alpha (\mathbf{u} + \mathbf{v}) = \alpha (\mathbf{u}) + \alpha (\mathbf{v})\)
 \[(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}\]
Vector Addition

\[\mathbf{v} + \mathbf{w} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2) \]
Vector Spaces

- *A linear combination* of vectors results in a new vector:

\[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n \]

- If the only set of scalars such that

\[\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = 0 \]

is

\[\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0 \]

then we say the vectors are *linearly independent*

- The *dimension* of a space is the greatest number of linearly independent vectors possible in a vector set

- For a vector space of dimension \(n \), any set of \(n \) linearly independent vectors form a *basis*
Vector Spaces: Basis Vectors

• Given a basis for a vector space:
 – Each vector in the space is a *unique* linear combination of the basis vectors
 – The *coordinates* of a vector are the scalars from this linear combination
 – Best-known example: Cartesian coordinates
 • Example
 – Note that a given vector \(\mathbf{v} \) will have different coordinates for different bases
Dot Product

• The *dot product* or, more generally, *inner product* of two vectors is a scalar:

\[\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1x_2 + y_1y_2 + z_1z_2 \] (in 3D)

• Useful for many purposes
 – Computing the length of a vector: \(\text{length}(\mathbf{v}) = \sqrt{\mathbf{v} \cdot \mathbf{v}} \)
 – *Normalizing* a vector, making it unit-length
 – Computing the angle between two vectors:
 \[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \]
 – Checking two vectors for orthogonality
 – *Projecting* one vector onto another
Vector norms

\(\mathbf{v} = (x_1, x_2, \ldots, x_n) \)

Two norm (Euclidean norm)

\[\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} \]

If \(\|\mathbf{v}\|_2 = 1 \), \(\mathbf{v} \) is a unit vector

Infinity norm

\[\|\mathbf{v}\|_{\infty} = \max(|x_1|, |x_2|, \ldots, |x_n|) \]

One norm ("Manhattan distance")

\[\|\mathbf{v}\|_1 = \sum_{i=1}^{n} |x_i| \]

For a 2 dimensional vector, write down the set of vectors with two, one and infinity norm equal to unity
Linear Transformations: Matrices

- A linear transformation:
 - Maps one vector to another
 - Preserves linear combinations

- Thus behavior of linear transformation is completely determined by what it does to a basis

- Turns out any linear transform can be represented by a matrix
Matrices

• By convention, matrix element M_{ij} is located at row i and column j:

$$
M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1n} \\
M_{21} & M_{22} & \cdots & M_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{m1} & M_{m2} & \cdots & M_{mn}
\end{bmatrix}
$$

• By convention, vectors are columns:

$$
v = \begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}$$
How are matrices stored in a computer?

• Matlab and Fortran: column by column
 – Indices start at 1
 – What is the most efficient way to access a matrix?

• C arrays are closely linked to pointers
 – Indices start at 0
 – C native matrices are row major
 – Many issues which must be dealt with by properly defining matrices, or using a set of matrix definitions
 – (see http://www.library.cornell.edu.nr/bookcpdf/c1-2.pdf for a nice discussion)
Ways to define matrices

- Perhaps all entries are random …

- More often, they are somehow functions of i and j

 Example: A Hilbert matrix A of size 5×5, with element (i, j)

 $$a_{ij} = \frac{1}{i + j - 1}.$$

- Matlab code to generate matrix

- If matrix is of size $N \times N$

 how many operations are needed to enter values?

- Sometimes each column or row is given as a formula:

 - Example Vandermonde matrix in polynomial interpolation
Some special matrices

Example: A *Vandermonde* matrix A is defined by a vector of elements x_1, \ldots, x_n. Its first column is all ones. Each later column is the preceding one times this vector.

- **Matlab code**

  ```matlab
  n = length(x);
  V(:,1) = ones(n,1);
  for j=2:n,
  V(:,j) = x.*V(:,j-1);
  end
  ```

- **Vectorized operations**

- **Matrix may be sparse, i.e. most elements are zero.**

- **How many operations/memory does this take?**

- **How many operations/memory?**

- **Answer still N^2 unless we avoid referring to the zero elements altogether**

$$D = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 6 \\
\end{bmatrix}$$

$$D = \text{diag}([1 \ 2 \ 4 \ 6]);$$