Computational Methods
CMSC/AMSC/MAPL 460

Vectors, Matrices, Linear Systems, LU Decomposition,

Ramani Duraiswami,
Dept. of Computer Science
Class Outline

• Much of scientific computation involves solution of linear equations
 – Even non-linear problems are solved by linearization
• Some interpretations of matrices and vectors
• Matrix vector multiplication and complexity
 – Memory organization and access of elements
• Identity, Inverse, Singular Matrices
• Permutation, Lower and Upper Triangular Matrices
Vectors

• Ordered set of numbers: (1,2,3,4)
• Example: (x,y,z) coordinates of a point in space.
• Line joining the origin of coordinates to the point
• Vectors usually indicated with bold lower case letters. Scalars with lower case

• Operations with vectors:
 – Addition operation \(\mathbf{u} + \mathbf{v} \), with:
 • Identity \(\mathbf{0} \) \(\mathbf{v} + \mathbf{0} = \mathbf{v} \)
 • Inverse - \(\mathbf{v} + (-\mathbf{v}) = \mathbf{0} \)
 – Scalar multiplication:
 • Distributive rule: \(\alpha(\mathbf{u} + \mathbf{v}) = \alpha(\mathbf{u}) + \alpha(\mathbf{v}) \)
 \[(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u} \]
Vector Addition

\[\mathbf{v} + \mathbf{w} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2) \]
Vector Spaces

• A *linear combination* of vectors results in a new vector:

\[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n \]

• If the only set of scalars such that

\[\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0} \]

is

\[\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0 \]

then we say the vectors are *linearly independent*

• The *dimension* of a space is the greatest number of linearly independent vectors possible in a vector set

• For a vector space of dimension \(n \), any set of \(n \) linearly independent vectors form a *basis*
Vector Spaces: Basis Vectors

• Given a basis for a vector space:
 – Each vector in the space is a *unique* linear combination of the basis vectors
 – The *coordinates* of a vector are the scalars from this linear combination
 – Best-known example: Cartesian coordinates
 • Example
 – Note that a given vector \(\mathbf{v} \) will have different coordinates for different bases
Dot Product

• The *dot product* or, more generally, *inner product* of two vectors is a scalar:

\[\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1x_2 + y_1y_2 + z_1z_2 \] (in 3D)

• Useful for many purposes
 – Computing the length of a vector: \(\text{length}(\mathbf{v}) = \sqrt{\mathbf{v} \cdot \mathbf{v}} \)
 – *Normalizing* a vector, making it unit-length
 – Computing the angle between two vectors:
 \[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \]
 – Checking two vectors for orthogonality
 – *Projecting* one vector onto another
Linear Transformations: Matrices

• **A linear transformation:**
 – Maps one vector to another
 – Preserves linear combinations

• Thus behavior of linear transformation is completely determined by what it does to a basis

• Turns out any linear transform can be represented by a **matrix**

• A $M \times N$ matrix takes a vector with N elements to a vector with M elements.
Matrices

- By convention, matrix element M_{ij} is located at row i and column j:

\[
M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1n} \\
M_{21} & M_{22} & \cdots & M_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{m1} & M_{m2} & \cdots & M_{mn}
\end{bmatrix}
\]

- By convention, vectors are columns:

\[
v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}
\]
How are matrices stored in a computer?

• Matlab and Fortran: column by column
 – Indices start at 1
 – What is the most efficient way to access a matrix?

• C arrays are closely linked to pointers
 – Indices start at 0
 – C native matrices are row major
 – Many issues which must be dealt with by properly defining matrices, or using a set of matrix definitions
 – (see http://www.library.cornell.edu/nr/bookcpdf/c1-2.pdf for a nice discussion)
Some special matrices

Example: A tridiagonal matrix

$$T = \begin{bmatrix}
1 & 3 & 0 & 0 \\
5 & 2 & 7 & 0 \\
0 & 9 & 4 & 8 \\
0 & 0 & 6 & 6 \\
\end{bmatrix}$$

can be defined by

$$T = \text{diag}([1, 2, 4, 6]) + \text{diag}([5, 9, 6], -1) + \text{diag}([3, 7, 8], 1);$$

- Matrices may be built up from “blocks” of smaller matrices
Some special matrices

Example: A **Vandermonde** matrix A is defined by a vector of elements x_1, \ldots, x_n. Its first column is all ones. Each later column is the preceding one times this vector.

- Matlab code

  ```matlab
  n = length(x);
  V(:,1) = ones(n,1);
  for j=2:n,
      V(:,j) = x.*V(:,j-1);
  end
  ```

- How many operations and memory does this take?

- Vectorized operations

- Matrix may be sparse, i.e. most elements are zero.

- How many operations/memory?

- Answer still N^2 unless we avoid referring to the zero elements altogether

\[
D = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 6
\end{bmatrix}
\]

\[
D = \text{diag}([1 \ 2 \ 4 \ 6]);
\]
Matrix-vector product

- Matrix-vector multiplication applies a linear transformation to a vector:

\[
M \cdot v = \begin{bmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{bmatrix}
\begin{bmatrix}
v_x \\
v_y \\
v_z
\end{bmatrix}
\]

- Recall how to do matrix multiplication
- How many operations does this matrix vector product take?
- How many operations does a general matrix vector product take?
Ways to implement a matrix vector product

- **Access matrix**
 - Element-by-element along rows
 - Element-by-element along columns
 - As column vectors
 - As row vectors

- **Discuss advantages**
Vector norms

\[\mathbf{v} = (x_1, x_2, \ldots, x_n) \]

Two norm (Euclidean norm)

\[\| \mathbf{v} \|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} \]

If \(\| \mathbf{v} \|_2 = 1 \), \(\mathbf{v} \) is a unit vector

Infinity norm

\[\| \mathbf{v} \|_\infty = \max(|x_1|, |x_2|, \ldots, |x_n|) \]

One norm ("Manhattan distance")

\[\| \mathbf{v} \|_1 = \sum_{i=1}^{n} |x_i| \]

For a 2 dimensional vector, write down the set of vectors with two, one and infinity norm equal to unity
Matrix norms

- Can be defined using corresponding vector norms
 - Two norm
 - One norm
 - Infinity norm
- Two norm is hard to define ... need to find maximum singular value
 - related to idea that matrix acting on unit sphere converts it in to an ellipsoid
- Frobenius norm is defined just using matrix elements

\[
\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2
\]

\[
\|A\|_1 = \max_{\|x\|_1=1} \|Ax\|_1
\]

\[
= \max_{j=1,\ldots,n} \sum_{i=1}^{m} |a_{ij}|
\]

\[
\|A\|_{\infty} = \max_{\|x\|_1=1} \|Ax\|_{\infty}
\]

\[
= \max_{i=1,\ldots,n} \sum_{j=1}^{m} |a_{ij}|
\]

\[
\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{i,j}|^2 \right)^{1/2}
\]
Condition Number of a Matrix

A measure of how close a matrix is to singular

\[
\text{cond}(A) = \kappa(A) = \|A\| \cdot \|A^{-1}\|
\]

\[
= \frac{\text{maximum stretch}}{\text{maximum shrink}} = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}
\]

- \(\text{cond}(I) = 1\)
- \(\text{cond}\text{(singular matrix)} = \infty\)
Matrix Transformations

- A sequence or composition of linear transformations corresponds to the product of the corresponding matrices.
 - Note: the matrices to the right affect vector first.
 - Note: order of matrices matters!
- The identity matrix I has no effect in multiplication.
- Some (not all) matrices have an inverse:

\[
M^{-1}(M(v)) = v
\]
Solving Linear Systems

- One idea compute inverse
- Not usually a good idea
 - (unless inverse is computable easily and accurately using some matrix property)
- Leads to increased errors, and is more expensive usually

\[Ax = b \]

\[7x = 21 \]

\[x = \frac{21}{7} = 3 \]

\[x = 7^{-1} \times 21 \]

\[= 0.142857 \times 21 = 2.99997 \]
Easy systems to solve

• Diagonal system
• Triangular system
• On board and then matlab
• Cost of diagonal solve is O(n)

\[
x = \text{zeros}(n,1)
\text{for } k=1:n
\quad x(k) = b(k)/A(k,k)
\text{end}
\]