Computational Methods
CMSC/AMSC 460

Ramani Duraiswami,
Dept. of Computer Science

Computer Memory
• Everything on a computer is stored digitally
 – Numbers, Letters, Instructions
• Memory is
 – Limited
 – has two states 0 and 1 ➔ Binary
• How do you represent numbers for scientific computation?
Fixed point representation

- How can we represent a number in a computer’s memory?
- Fixed point is an obvious way:
- Used to represent integers on computers, and real numbers on some DSPs:
- Each **word** (storage location) in a machine contains a fixed number of digits.
- Example: An old style calculator display with 6-digits

\[
\begin{array}{cccccc}
0 & 0 & 2 & 0 & 0 & 5 \\
\end{array}
\]

- This only allows us to represent integers and uses a decimal system

Binary/Decimal/Octal/Hexadecimal

- Computer memory usually has two states
 - Assigned to 0 and 1
 - Leads to a binary representation
- Numbers can be represented in different bases
- Usually humans use decimal
 - Perhaps because we have ten fingers
- Octal and Hexadecimal representations arise by considering 3 or 4 memory locations together
 - Lead to $2^3 = 8$ and $2^4 = 16$ numbers
Binary Representation

- **binary (base 2)** representation.

 \[0 \ 1 \ 0 \ 1 \ 1 \ 0\]

- Each digit has a value 0 or 1.

- If the number above is binary, its value is

 \[1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0.\] (or 22 in base 10)

- Adding numbers in binary

 \[
 \begin{array}{cccc}
 0 & 0 & 0 & 1 & 1 \\
 + & 0 & 1 & 0 & 1 \\
 \hline
 0 & 1 & 1 & 0 & 1
 \end{array}
 \]

 Note the “carry” here!

Bits and Bytes; Hexadecimal

- **Bit**: a single binary digit

 – Can take on one of the two values 0 and 1.

- **A byte is a group of eight bits**

 – A “nibble” is four bits or half a byte

- **Hexadecimal digit (base 16) == four bits,**

 – bytes can be described by pairs of hexadecimal digits.

 \[
 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 0000, \ 0001, \ 0010, \ 0011, \ 0100, \ 0101, \ 0110, \ 0111, \ 1000, \ 1001, \ 1010, \ 1011, \ 1100, \ 1101, \ 1110, \ 1111
 \]

 \[
 9, \ A(10), \ B(11), \ C(12), \ D(13), \ E(14), \ F(15)
 \]

- **01011110₂ may be represented by the number 5E₁₆,**
Words

- Memory locations on a 32 bit machine, usually consist of 4 bytes => called a word
- Relationship between words and data of various sizes:
 - byte 8bits, 1 byte
 - short or half word 16bits, 2 bytes
 - word 32bits, 4 bytes
 - long or double word 64 bits, 8 bytes
- Internally, by default, Matlab stores all numbers in double words
 - Can specify other types of storage

Unsigned Integers

- Integers can be added, subtracted, multiplied, and divided.
- **Exceptions**
 - However, the result of these operations cannot always be represented in the computer.
 - $13_{10} + 5_{10} = 1101_2 + 0101_2 = 10010_2$
 - If we stay with 4 bit memory locations, the above sum cannot be represented
- This situation is called an arithmetic exception.
 Arithmetic exceptions can be handled by an automatic default or by trapping to an exception handler.
- In some situations, when we are performing calculations modulo some number, we may discard the extra bit.
 - This gives the answer $0010_2 = 2_{10}$ which is just $13 + 5 \pmod{16}$. In some applications this is just what we want.
Exception handling

- In others this is a wrong result and we need to use exception handling
- Operations leading to exceptions
 - $a + b$: Overflow
 - $a - b$: Negative result, i.e., $a < b$
 - $a \times b$: Overflow
 - a / b: Division by zero or noninteger result
- This may need to bring in logic that causes the process to stop, and bring in further information from main memory and may be computationally expensive.
- Fatal exceptions: cause process to abort
- Default handling: may be turned on
- For division it is generally agreed that division by zero is fatal
- There is also agreement about what to do when the result is not an integer
- E.g., $17/3 = 5.6667 \rightarrow 5$
- The exact quotient should be truncated toward zero.

Negative numbers

- One way computers represent negative numbers is using the sign-magnitude representation:
- **Sign magnitude**: if the first bit is zero, then the number is positive. Otherwise, it is negative.
- 0 0 0 1 1 Denotes +11.
- 1 0 0 1 1 Denotes -11.

Range of fixed point numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 =15
Smallest: 1 1 1 1 1 =-15
Smallest positive: 0 0 0 0 1 =1
Signed Integers

- Stored in a four byte word
- Can have two byte, byte, and 8 byte versions
- Need to figure out how to represent sign:
 - Two approaches
 - **Sign magnitude**: if the first bit is zero, then number is positive. Otherwise, it is negative.
 - 0 0 1 1 Denotes +11.
 - 1 0 1 1 Denotes -11.
 - Zero: Both 0 0 0 0 and 1 0 0 0 represent zero
 - **Two’s complement**: As before the if the first bit is zero the number is positive
 - However values for the negative numbers are determined by subtraction of the number from 2^n.
 - There is one more negative number possible
- Signed numbers can overflow or underflow.
- Two's complement representation seems unnatural, but in fact it is the way that is used in computer processors, as it is easier to implement in hardware.

<table>
<thead>
<tr>
<th>x</th>
<th>$+x$</th>
<th>$-x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Fixed point arithmetic:
- Easy: always get an integer answer.
- Either we get exactly the right answer, or we can detect overflow.
- The numbers that we can store are equally spaced.
- Disadvantage: **very** limited range of numbers.
Floating point

• Attempt to
 – Handle decimal numbers
 – increase the range of numbers that can be represented
 – Provide a standard by which exceptions are consistently handled

• Use Scientific Notation as a guide

Scientific Notation

\[-6.023 \times 10^{-23}\]

- Sign
- Normalized Mantissa
- Exponent
- Base
- Sign of Exponent
Floating point on a computer

- Using fixed number of bits represent real numbers on a computer
- Once a base is agreed we store each number as two numbers and two signs
 - Mantissa and exponent
- Mantissa is usually “normalized”
- If we have infinite spaces to store these numbers, we can represent arbitrarily large numbers
- With a fixed number of spaces for the two numbers (mantissa and exponent) the number representation is more limited

Binary Floating Point Representation

- Same basic idea as scientific notation
- Modifications and improvements based on
 - Hardware architecture
 - Efficiency (Space & Time)
 - Additional requirements: Need to represent conditions which arise during calculations
 - Infinity
 - Not a number (NaN)
 - Underflow
Floating point on a computer

• If we wanted to store 15×2^{11}, we would need 16 bits:
 \[0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0\]

• Instead we store it as three numbers
• \((-1)^S \times F \times 2^E\), with $F = 15$ saved as 01111 and $E = 11$ saved as 01011.

• Now we can have fractions/decimals, too:

 \[
 \text{binary } .101 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}.
 \]

IEEE-754 (single precision)

\[
\begin{array}{|c|c|c|c|c|}
\hline
0 & 1 & 8 & 9 & 31 \\
\hline
0 & \text{exponent} & \text{mantissa (significand)} & & \\
\hline
\end{array}
\]

\[
(-1)^S \times 1.f \times 2^{E-127}
\]
Most nonzero floating-point numbers are normalized. This means they can be expressed as
\[x = \pm (1 + f) \cdot 2^e \]

The quantity \(f \) is the fraction or mantissa and \(e \) is the exponent. The fraction satisfies
\[0 \leq f < 1 \]

and must be representable in binary using at most 52 bits. In other words, \(2^{52}f \) is an integer in the interval
\[0 \leq 2^{52}f < 2^{52} \]

The exponent \(e \) is an integer in the interval
\[-1022 \leq e \leq 1023 \]

The finiteness of \(f \) is a limitation on precision. The finiteness of \(e \) is a limitation on range. Any numbers that don’t meet these limitations must be approximated by ones that do.

Double-precision floating-point numbers are stored in a 64 bit word, with 52 bits for \(f \), 11 bits for \(e \), and one bit for the sign of the number. The sign of \(e \) is accommodated by storing \(e + 1023 \), which is between 1 and \(2^{11} - 2 \). The two