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Floating point representation

e Represent real numbers using a finite number of bits

e Keywords
— Mantissa, Exponent, Sign
— Precision
— Machine Epsilon

— Overflow, Undertlow

e Special Numbers
— Zero
— Inf
— NaN
— Undertlow
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Exponent

EEE-Double: stored as binary number+1023

— Also known as biased exponent

Occupies 11 bits
— Decimals values range from O to 21! -1 = 2047

— Exponent values used to represent numbers range from -1022 to
1023 (1 to 2046)

— Values -1023 and 1024 are special
EEE-Single: stored as binary number+127

Occupies 8 bits
— Decimals values range from 0 to 28 -1 = 255

— Exponent values used to represent numbers range from -126 to
127 (1 to 254)

— Values -127 and 128 are special



Sign and Mantissa
Sign 1s 0 (positive) or 1 (negative)
_1s
Mantissa: Has the form 1+0.f

Double precision
— f1s a 52 bit number
— Abs minis O
— max i8 ¥2+1/22+1/23+...+1/2>2
— Geometric series Y2(1-(1/2)°2)/(1-1/2)
= (1-(1/2)°%) = 1-2.22044604925031e-016
single precision
— 23 bit number 1n
— Abs min 0, max is Y2+1/22+1/23+...+1/2%3
— Geometric series 1-(1/2)%3=0.99999988079071



Precision and Machine €

Any two numbers for a given value of the exponent are
separated by (2/-52)*27e-1023) = 2”(e-1023-52)

For each value of e the separation 1s uniform

machine epsilon: eps is the distance from 1 to the next
larger floating-point number.

Floatgui1 Matlab code



Special numbers

e /ero

Since numbers are written as (-1)° (1+f)*2(¢-1925) we cannot have zero
So zero must be specially coded
Choose the lowest value: e=0 and /=0

(without this understanding the number would be 2-1923=1.1125369292536 X
10-308)

e Infinity

Corresponds to f=0 and e=2047
Without this understanding would be 1.79769313486232x 103%

e Undetfined numbers

If any computation tries to produce a value that is undefined even in the real
number system, the result 1s an “exception” known as Not-a-Number, or NaN.

Examples include 0/0 and Inf-Inf.
NaN is represented by taking e = 1024 and f nonzero.
“Floating point exception”



Other exceptions

e QOverflow: calculation
yields number larger than
realmax

e Underflow: calculations
yields number smaller
than realmin

Number | Binary Decimal

eps 252 2.2204e-16
realmin | 2-1022 2.2251e-308
realmax | (2-eps)*219%3 | 1.7977e+308




Some numbers cannot be exactly represented
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It turns out that 1/10 is closer to t2 than to t1, so t is equal to t2. In other words,



Effects of tloating point errors

e Singular equations will T2y 4+ 5 = 22
only be nearly singular 1721 +0.523 = 2.2

e Severe cancellation errors can A= [17 5; 1.7 0.5]
occur z z Ei; 2.2]

X = 0.988:.0001:1.012;
y = XA7-7*X.26+21*X."5-35"X."4+35"X."3-21*X."2+7*x-1; produce
plot(x,y)
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Measuring error

e Absolute error in ¢ as an approximation to x:
Ix — ¢l

e Relative error in ¢ as an approximation to nonzero x:
l(x — c)/xl



Errors can be magnified

Errors can be magnified during computation.

Let us assume numbers are known to 0.05% accuracy

Example: 2.003 x 10° and 2.000 x 109
— both known to within + .001

Perform a subtraction. Result of subtraction:
0.003 x 1009
but true answer could be as small as 2.002 - 2.001 = 0.001,
or as large as 2.004 - 1.999 = 0.005!
Absolute error of 0.002
Relative error of 200% !

Adding or subtracting causes the bounds on absolute
errors to be added



Error effect on multiplication/division

Let x and y be true values

Let X=x(/+r) and Y=y(1+s) be the known
approximations

Relative errors are r and s
What is the errors in multiplying the numbers?
XY=xy(l+r)(1+s)
Absolute error =Ixy(I-rs-r-s-1)|= (rs+r+s)xy
Relative error = [(xy-XY)/xy!

= |rs+r+sl <= lrl+Isl+Irsl
If rand s are small we can ignore |7s|

Multiplying/dividing causes relative error bounds to add



Error Analysis

 Forward and Backward error analysis

e Forward error analysis
— Assume that the problem we are solving is exactly specified
— Produce an approximate answer using the algorithm considered

True problem

True solution
(unknown)

Computed

Space of problems Space of answers solution

. . (known)
— Goal of forward error analysis produce region guaranteed to

contain true soln.
— Report region and computed solution



Backward error analysis
 We know that our problem specification itself has error (“‘error in
initial data™)
e So while we think we are solving one problem we are actually

solving another
Unknown problem

(the one actually solved)

True problem

(known)
True Solution

Region (Unknown)
containing
true Computed
problem solution
and solved  Space of problems Space of answers

problem

e (Given an answer, determine how close the problem actually solved
1s to the given problem.

e Report solution and input region



Well posed problems

 Hadamard postulated that for a problem to be “well
posed”
1. Solution must exist
2. It must be unique
3. Small changes to input data should cause small changes to

solution

e Essentially this means the regions in the problem space

and solution space must be small



