
Computational Methods

CMSC/AMSC/MAPL 460

Representing numbers in floating point

Error Analysis

Ramani Duraiswami,

Dept. of Computer Science

Class Outline

• Recap of floating point representation

• Matlab demos

• Error analysis

• Forward error analysis

• Backward error analysis

Floating point representation

• Represent real numbers using a finite number of bits

• Keywords

– Mantissa, Exponent, Sign

– Precision

– Machine Epsilon

– Overflow, Underflow

• Special Numbers

– Zero

– Inf

– NaN

– Underflow

Can be written...

0 00000000000 000000000000……000000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 2 E * 1.f

Non-normalized

typically

underflow

Floating point

Numbers

0
Powers

of

Two
∞

E+1023 == 0 0 < E+1023 < 2047 E+1023 == 2047

f==0

f~=0
Not

A

Number

Exponent

• IEEE-Double: stored as binary number+1023

– Also known as biased exponent

• Occupies 11 bits

– Decimals values range from 0 to 211 -1 = 2047

– Exponent values used to represent numbers range from -1022 to
1023 (1 to 2046)

– Values -1023 and 1024 are special

• IEEE-Single: stored as binary number+127

• Occupies 8 bits

– Decimals values range from 0 to 28 -1 = 255

– Exponent values used to represent numbers range from -126 to
127 (1 to 254)

– Values -127 and 128 are special

Sign and Mantissa

• Sign is 0 (positive) or 1 (negative)

• -1s

• Mantissa: Has the form 1+0.f

• Double precision

– f is a 52 bit number

– Abs min is 0

– max is ½+1/22+1/23+…+1/252

– Geometric series ½(1-(1/2)52)/(1-1/2)
= (1-(1/2)52) = 1-2.22044604925031e-016

• single precision

– 23 bit number in

– Abs min 0, max is ½+1/22+1/23+…+1/223

– Geometric series 1-(1/2)23=0.99999988079071

Precision and Machine ε

• Any two numbers for a given value of the exponent are

separated by (2^-52)*2^(e-1023) = 2^(e-1023-52)

• For each value of e the separation is uniform

• machine epsilon: eps is the distance from 1 to the next

larger floating-point number.

• Floatgui Matlab code

Special numbers

• Zero

– Since numbers are written as (-1)s (1+f)*2(e-1023) we cannot have zero

– So zero must be specially coded

– Choose the lowest value: e=0 and f=0

– (without this understanding the number would be 2-1023 = 1.1125369292536 ×
10-308)

• Infinity

– Corresponds to f=0 and e=2047

– Without this understanding would be 1.79769313486232× 10309

• Undefined numbers

– If any computation tries to produce a value that is undefined even in the real
number system, the result is an “exception” known as Not-a-Number, or NaN.

– Examples include 0/0 and Inf-Inf.

– NaN is represented by taking e = 1024 and f nonzero.

– “Floating point exception”

Other exceptions

• Overflow: calculation

yields number larger than

realmax

• Underflow: calculations

yields number smaller

than realmin

Number Binary Decimal

eps 2-52 2.2204e-16

realmin 2-1022 2.2251e-308

realmax (2-eps)*21023 1.7977e+308

Some numbers cannot be exactly represented

Effects of floating point errors

• Singular equations will

only be nearly singular

• Severe cancellation errors can

occur

x = 0.988:.0001:1.012;

y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;

plot(x,y)

Measuring error

• Absolute error in c as an approximation to x:

|x – c|

• Relative error in c as an approximation to nonzero x:

|(x – c)/x|

Errors can be magnified

• Errors can be magnified during computation.

• Let us assume numbers are known to 0.05% accuracy

• Example: 2.003 × 100 and 2.000 × 100

– both known to within ± .001

• Perform a subtraction. Result of subtraction:

0.003 × 100

• but true answer could be as small as 2.002 - 2.001 = 0.001,

• or as large as 2.004 - 1.999 = 0.005!

• Absolute error of 0.002

• Relative error of 200% !

• Adding or subtracting causes the bounds on absolute
errors to be added

Error effect on multiplication/division

• Let x and y be true values

• Let X=x(1+r) and Y=y(1+s) be the known

approximations

• Relative errors are r and s

• What is the errors in multiplying the numbers?

• XY=xy(1+r)(1+s)

• Absolute error =|xy(1-rs-r-s-1)|= (rs+r+s)xy

• Relative error = |(xy-XY)/xy|

= |rs+r+s| <= |r|+|s|+|rs|

• If r and s are small we can ignore |rs|

• Multiplying/dividing causes relative error bounds to add

Error Analysis

• Forward and Backward error analysis

• Forward error analysis

– Assume that the problem we are solving is exactly specified

– Produce an approximate answer using the algorithm considered

– Goal of forward error analysis produce region guaranteed to
contain true soln.

– Report region and computed solution

*
True problem

*
True solution

(unknown)#

Computed

solution

(known)

Backward error analysis
• We know that our problem specification itself has error (“error in

initial data”)

• So while we think we are solving one problem we are actually

solving another

• Given an answer, determine how close the problem actually solved

is to the given problem.

• Report solution and input region

*
True problem

(known)

*

#

Unknown problem

(the one actually solved)

True Solution

(Unknown)
#

Computed

solution

Region

containing

true

problem

and solved

problem

Well posed problems

• Hadamard postulated that for a problem to be “well

posed”

1. Solution must exist

2. It must be unique

3. Small changes to input data should cause small changes to

solution

• Essentially this means the regions in the problem space

and solution space must be small

