Computational Methods CMSC/AMSC/MAPL 460

Representing numbers in floating point Error Analysis

Ramani Duraiswami,
Dept. of Computer Science

Class Outline

- Recap of floating point representation
- Matlab demos
- Error analysis
- Forward error analysis
- Backward error analysis

Floating point representation

- Represent real numbers using a finite number of bits
- Keywords
- Mantissa, Exponent, Sign
- Precision
- Machine Epsilon
- Overflow, Underflow
- Special Numbers
- Zero
- Inf
- NaN
- Underflow

Can be written...

0	00000000000	000000000000..... 000000000000000
s	exponent	mantissa (significand)
i	$(-1)^{S}$	2 E * $1 . \mathrm{I}$

	$E+1023==0$	$0<E+1023<2047$	$E+1023==2047$
$f==0$	0	Powers of Two	∞
$f \sim=0$	Non-normalized typically underflow	Floating point Numbers	Not A Number

Exponent

- IEEE-Double: stored as binary number+1023
- Also known as biased exponent
- Occupies 11 bits
- Decimals values range from 0 to $2^{11}-1=2047$
- Exponent values used to represent numbers range from -1022 to 1023 (1 to 2046)
- Values -1023 and 1024 are special
- IEEE-Single: stored as binary number+127
- Occupies 8 bits
- Decimals values range from 0 to $2^{8}-1=255$
- Exponent values used to represent numbers range from -126 to 127 (1 to 254)
- Values -127 and 128 are special

Sign and Mantissa

- Sign is 0 (positive) or 1 (negative)
- -1^{s}
- Mantissa: Has the form $1+0 . f$
- Double precision
- f is a 52 bit number
- Abs min is 0
$-\max$ is $1 / 2+1 / 2^{2}+1 / 2^{3}+\ldots+1 / 2^{52}$
- Geometric series $1 / 2\left(1-(1 / 2)^{52}\right) /(1-1 / 2)$ $=\left(1-(1 / 2)^{52}\right)=1-2.22044604925031 \mathrm{e}-016$
- single precision
- 23 bit number in
- Abs min 0 , max is $1 / 2+1 / 2^{2}+1 / 2^{3}+\ldots+1 / 2^{23}$
- Geometric series 1-(1/2) $)^{23}=0.99999988079071$

Precision and Machine ε

- Any two numbers for a given value of the exponent are separated by $\left(2^{\wedge}-52\right) * 2^{\wedge}(\mathrm{e}-1023)=2^{\wedge}(\mathrm{e}-1023-52)$
- For each value of e the separation is uniform
- machine epsilon: eps is the distance from 1 to the next larger floating-point number.
- Floatgui Matlab code

Special numbers

- Zero
- Since numbers are written as $(-1)^{s}(1+f) * 2^{(e-1023)}$ we cannot have zero
- So zero must be specially coded
- Choose the lowest value: $\mathrm{e}=0$ and $f=0$
- (without this understanding the number would be $2^{-1023}=1.1125369292536 \times$ 10^{-308})
- Infinity
- Corresponds to $f=0$ and $e=2047$
- Without this understanding would be $1.79769313486232 \times 10^{309}$
- Undefined numbers
- If any computation tries to produce a value that is undefined even in the real number system, the result is an "exception" known as Not-a-Number, or NaN.
- Examples include 0/0 and Inf-Inf.
- NaN is represented by taking $e=1024$ and f nonzero.
- "Floating point exception"

Other exceptions

- Overflow: calculation yields number larger than realmax
- Underflow: calculations yields number smaller than realmin

Number	Binary	Decimal
eps	2^{-52}	$2.2204 \mathrm{e}-16$
realmin	2^{-1022}	$2.2251 \mathrm{e}-308$
realmax	$(2-\mathrm{eps}) * 2^{1023}$	$1.7977 \mathrm{e}+308$

Some numbers cannot be exactly represented

$$
\begin{aligned}
& \frac{1}{10}=\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{0}{2^{6}}+\frac{0}{2^{7}}+\frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{0}{2^{10}}+\frac{0}{2^{11}}+\frac{1}{2^{12}}+\ldots \\
& t=\left(1+\frac{9}{16}+\frac{9}{16^{2}}+\frac{9}{16^{3}}+\ldots+\frac{9}{16^{12}}+\frac{10}{16^{13}}\right) \cdot 2^{-4} \\
& \quad t_{1}<1 / 10<t_{2}
\end{aligned}
$$

Where

$$
\begin{aligned}
& t_{1}=2^{-4} \cdot\left(1+\frac{9}{16}+\frac{9}{16^{2}}+\frac{9}{16^{3}}+\ldots+\frac{9}{16^{12}}+\frac{9}{16^{13}}\right) \\
& t_{2}=2^{-4} \cdot\left(1+\frac{9}{16}+\frac{9}{16^{2}}+\frac{9}{16^{3}}+\ldots+\frac{9}{16^{12}}+\frac{10}{16^{13}}\right)
\end{aligned}
$$

It turns out that $1 / 10$ is closer to t_{2} than to t_{1}, so t is equal to t_{2}. In other words,

Effects of floating point errors

- Singular equations will only be nearly singular
- Severe cancellation errors can occur

$$
\begin{aligned}
17 x_{1}+5 x_{2} & =22 \\
1.7 x_{1}+0.5 x_{2} & =2.2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{llll}
17 & 5 ; 1.7 & 0.5
\end{array}\right] \\
& \mathrm{b}=[22 ; 2.2] \\
& \mathrm{x}=\mathrm{A} \backslash \mathrm{~b}
\end{aligned}
$$

$x=0.988: .0001: 1.012$;
$y=x . \wedge 7-7^{*} x .^{\wedge} 6+21^{*} x .{ }^{\wedge} 5-35^{*} x .^{\wedge} 4+35^{*} x .^{\wedge} 3-21^{*} x . .^{\wedge} 2+7^{*} x-1$; produce $\operatorname{plot}(x, y)$

$$
\begin{aligned}
& x= \\
& -1.0588 \\
& 8.0000
\end{aligned}
$$

Measuring error

- Absolute error in c as an approximation to x :

$$
|x-c|
$$

- Relative error in c as an approximation to nonzero x :

$$
|(x-c) / x|
$$

Errors can be magnified

- Errors can be magnified during computation.
- Let us assume numbers are known to 0.05% accuracy
- Example: 2.003×10^{0} and 2.000×10^{0}
- both known to within $\pm .001$
- Perform a subtraction. Result of subtraction:

$$
0.003 \times 10^{0}
$$

- but true answer could be as small as $2.002-2.001=0.001$,
- or as large as 2.004-1.999 $=0.005$!
- Absolute error of 0.002
- Relative error of 200% !
- Adding or subtracting causes the bounds on absolute errors to be added

Error effect on multiplication/division

- Let x and y be true values
- Let $X=x(l+r)$ and $Y=y(l+s)$ be the known approximations
- Relative errors are r and s
- What is the errors in multiplying the numbers?
- $\mathrm{XY}=\mathrm{xy}(1+\mathrm{r})(1+\mathrm{s})$
- Absolute error $=|x y(1-r s-r-s-1)|=(r s+r+s) x y$
- Relative error $=|(x y-X Y) / x y|$

$$
=|r s+r+s|<=|r|+|s|+|r s|
$$

- If r and s are small we can ignore $|r s|$
- Multiplying/dividing causes relative error bounds to add

Error Analysis

- Forward and Backward error analysis
- Forward error analysis
- Assume that the problem we are solving is exactly specified
- Produce an approximate answer using the algorithm considered

Space of problems

- Goal of forward error analysis produce region guaranteed to contain true soln.
- Report region and computed solution

Backward error analysis

- We know that our problem specification itself has error ("error in initial data")
- So while we think we are solving one problem we are actually solving another

Unknown problem
(the one actually solved)

problem and solved Space of problems problem

Space of answers

- Given an answer, determine how close the problem actually solved is to the given problem.
- Report solution and input region

Well posed problems

- Hadamard postulated that for a problem to be "well posed"

1. Solution must exist
2. It must be unique
3. Small changes to input data should cause small changes to solution

- Essentially this means the regions in the problem space and solution space must be small

