Computational Methods
CMSC/AMSC/MAPL 460

Representing numbers in floating point
Error Analysis

Ramani Duraiswami,
Dept. of Computer Science
Class Outline

- Recap of floating point representation
- Matlab demos
- Error analysis
- Forward error analysis
- Backward error analysis
Floating point representation

- Represent real numbers using a finite number of bits
- **Keywords**
 - Mantissa, Exponent, Sign
 - Precision
 - Machine Epsilon
 - Overflow, Underflow
- **Special Numbers**
 - Zero
 - Inf
 - NaN
 - Underflow
Can be written...

$$(-1)^s \times 2^{E} \times 1.f$$

<table>
<thead>
<tr>
<th>s</th>
<th>$E+1023$</th>
<th>$0 < E+1023 < 2047$</th>
<th>$E+1023 = 2047$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f=0$</td>
<td>0</td>
<td>Powers of Two</td>
<td>∞</td>
</tr>
<tr>
<td>$f\sim=0$</td>
<td>Non-normalized typically underflow</td>
<td>Floating point Numbers</td>
<td>Not A Number</td>
</tr>
</tbody>
</table>
Exponent

- **IEEE-Double**: stored as binary number +1023
 - Also known as **biased** exponent
- **Occupies 11 bits**
 - Decimals values range from 0 to $2^{11} - 1 = 2047$
 - Exponent values used to represent numbers range from -1022 to 1023 (1 to 2046)
 - Values -1023 and 1024 are special
- **IEEE-Single**: stored as binary number +127
- **Occupies 8 bits**
 - Decimals values range from 0 to $2^8 - 1 = 255$
 - Exponent values used to represent numbers range from -126 to 127 (1 to 254)
 - Values -127 and 128 are special
Sign and Mantissa

• Sign is 0 (positive) or 1 (negative)
• -1^s
• Mantissa: Has the form $1+0.f$
• Double precision
 – F is a 52 bit number
 – Min is 0
 – Max is $\frac{1}{2}+1/2^2+1/2^3+\ldots+1/2^{52}$
 – Geometric series $1-(1/2)^{52}=1-2.22044604925031e-016$
• single precision
 – 23 bit number in
 – Min 0, max is $\frac{1}{2}+1/2^2+1/2^3+\ldots+1/2^{23}$
 – Geometric series $1-(1/2)^{23}=0.99999988079071$
Precision and Machine ε

- Any two numbers for a given value of the exponent are separated by $(2^{-52}) \cdot 2^e$
- For each value of e the separation is uniform
- *machine epsilon*: ε is the distance from 1 to the next larger floating-point number.
- Floatgui Matlab code
Special numbers

- **Zero**
 - Since numbers are written as \((-1)^s (1+f) \times 2^{(e-1023)}\) we cannot have zero
 - So zero must be specially coded
 - Choose the lowest value: e=0 and f=0
 - (without this understanding the number would be \(2^{-1023} = 1.1125369292536 \times 10^{-308}\))

- **Infinity**
 - Corresponds to f=0 and e=2047
 - Without this understanding would be \(1.79769313486232 \times 10^{309}\)

- **Undefined numbers**
 - If any computation tries to produce a value that is undefined even in the real number system, the result is an “exception” known as Not-a-Number, or NaN.
 - Examples include 0/0 and Inf-Inf.
 - NaN is represented by taking e = 1024 and f nonzero.
 - “Floating point exception”
Other exceptions

• **Overflow**: calculation yields number larger than `realmax`

• **Underflow**: calculations yields number smaller than `realmin`

<table>
<thead>
<tr>
<th>Number</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>eps</td>
<td>2^{-52}</td>
<td>2.2204e-16</td>
</tr>
<tr>
<td>realmin</td>
<td>2^{-1022}</td>
<td>2.2251e-308</td>
</tr>
<tr>
<td>realmax</td>
<td>$(2-\text{eps})2^{1023}$</td>
<td>1.7977e+308</td>
</tr>
</tbody>
</table>
Some numbers cannot be exactly represented

\[\frac{1}{10} = \frac{1}{2^4} + \frac{1}{2^5} + \frac{0}{2^6} + \frac{0}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{0}{2^{10}} + \frac{0}{2^{11}} + \frac{1}{2^{12}} + \cdots \]

\[t = (1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \cdots + \frac{9}{16^{12}} + \frac{10}{16^{13}}) \cdot 2^{-4} \]
Effects of floating point errors

- Singular equations will only be nearly singular
- Severe cancellation errors can occur

```matlab
x = 0.988:.0001:1.012;
y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;
plot(x,y)
```

```
17x_1 + 5x_2 = 22
1.7x_1 + 0.5x_2 = 2.2

A = [17 5; 1.7 0.5]
b = [22; 2.2]
x = A\b
produce
```

```
x =
-1.0588
8.0000
```
Measuring error

• **Absolute error** in c as an approximation to x:
 $$|x - c|$$

• **Relative error** in c as an approximation to nonzero x:
 $$|(x - c)/x|$$
Errors can be magnified

- Errors can be magnified during computation.
- Let us assume numbers are known to 0.05% accuracy
- Example: 2.003×10^0 and 2.000×10^0
 - both known to within ± 0.001
- Perform a subtraction. Result of subtraction:
 0.003×10^0
- but true answer could be as small as $2.002 - 2.001 = 0.001$,
- or as large as $2.004 - 1.999 = 0.005$!
- Absolute error of 0.002
- Relative error of 200% !
- Adding or subtracting causes the bounds on absolute errors to be added
Error effect on multiplication/division

- Let x and y be true values
- Let $X=x(1+r)$ and $Y=y(1+s)$ be the known approximations
- Relative errors are r and s
- What is the errors in multiplying the numbers?
- $XY=xy(1+r)(1+s)$
- Absolute error $= |xy(1-rs-r-s-1)| = (rs+r+s)xy$
- Relative error $= |(xy-XY)/xy|$
 $$= |rs+r+s| \leq |r| + |s| + |rs|$$
- If r and s are small we can ignore $|rs|$
- Multiplying/dividing causes relative error bounds to add
Error Analysis

• Forward and Backward error analysis
• Forward error analysis
 – Assume that the problem we are solving is exactly specified
 – Produce an approximate answer using the algorithm considered
 – Goal of forward error analysis produce region guaranteed to contain true soln.
 – Report region and computed solution
Backward error analysis

• We know that our problem specification itself has error ("error in initial data")

• So while we think we are solving one problem we are actually solving another

• Given an answer, determine how close the problem actually solved is to the given problem.

• Report solution and input region
Well posed problems

- Hadamard postulated that for a problem to be “well posed”
 1. Solution must exist
 2. It must be unique
 3. Small changes to input data should cause small changes to solution
- Essentially this means the regions in the problem space and solution space must be small