Computational Methods CMSC/AMSC/MAPL 460

Errors in data and computation

Representing numbers in floating point

Ramani Duraiswami, Dept. of Computer Science

Class Outline

- Computations should be as accurate and as error-free as possible
- Sources of error:
- Poor models of a physical situation
- · Ill-posed problems
- Errors due to representation of numbers on a computer and successive operations with these
 - Examples from the book
 - Scientific notation and Floating point representation
 - Concepts: sign, mantissa, base, exponent
 - Distribution of floating point numbers

Error

- What we need to know about error:
 - how does error arise
 - how machines do arithmetic
 - fixed point arithmetic
 - floating point arithmetic
 - how errors are propagated in calculations.
 - how to measure error

Typical task that uses scientific computing

- Evaluate safety of a machine part
- Tasks
- 1. Measure the parts dimensions, shape etc. and discretize it (e.g., via finite elements)
- 2. Determine the material it is made of
- 3. Find the mathematical models (equations) that determine how the part will deform according to loads
- 4. Discretize the equations (e.g., via finite elements)
- 5. Solve it on the computer

Errors

- Each step is characterized by some error
- 1. Measurement errors:
- 2. Errors in properties
- 3. Inexact mathematical models
- 4. Discretization errors: something continuous is represented discretely
- 5. Errors in the solution to discrete representations of numbers

Errors are inevitable

- Everybody did the best they could
- No one made any mistakes, yet answer could be wrong
- Goal of error analysis is to
 - determine when the answer can be relied upon
 - Which algorithms can be trusted for which data
- In particular we will focus on errors in part 5 (finite representation of numbers today)

Job of a Numerical Analyst/Computational Scientitst

- Numerical analyst
 - Designs algorithms and analyzes them
 - Develops mathematical software
 - Can provide some guarantees as to when the software will be accurate and when the final answer can be trusted
- Computational Scientist
 - Knows about mathematical software
 - Knows about the domain
 - Makes an intelligent choice to use the right tools for the job

Modeling

- Original mathematical models may be poorly specified or unavailable
 - E.g. Newton's laws work for non relativistic dynamics
 - Turbulence
 - ...
- Computing with a poor model will lead to inevitable errors
- Quantities that are measured may be done so with error and bias
 - Using them in computation will lead to errors
- Approaches to fix these errors are in the domain of statistics
 - Will not be much discussed in this course

Well posed problems

- Hadamard postulated that for a problem to be "well posed"
 - 1. Solution must exist
 - 2. It must be unique
 - 3. Small changes to input data should cause small changes to solution
- Many problems in science result in "ill-posed" problems.
 Numerically it is common to have condition 3 violated.
- Converting ill-posed problem to well-posed one is called *regularization*.
- Will discuss this later in the course when talking about optimization and Singular Value Decompositon.

Numerical Modeling and Measurement Errors

- Continuous mathematical models have to be represented in discrete form on the computer
 - Finite-difference or finite-element discretization
 - Continuous quantities may be represented using linear interpolants
 - Model may only reach accurate answer in the limit
 - Round-off errors continuous numbers represented with discrete representations on the computer
- Focus of today's class:
 - What errors are caused by such representations

Fixed point representation

- How can we represent a number in a computer's memory?
- Fixed point is an obvious way:
- Used to represent integers on computers, and real numbers on some DSPs:
- Each word (storage location) in a machine contains a fixed number of digits.
- Example: A machine with a 6-digit word might represent 2005 as

		0	0	2	0	0	5		
•	This only allows us to represent integers and uses decimal system								

а

Binary/Decimal/Octal/Hexadecimal

- Numbers can be represented in different bases
- Usually humans use decimal
 - Perhaps because we have ten fingers
- Computer memory often has two states
 - Assigned to 0 and 1
 - Leads to a binary representation
- Octal and Hexadecimal representations arise by considering 3 or 4 memory locations together
 - Lead to 2^3 and 2^4 numbers

- Disadvantage: very limited range of numbers.

Floating point on a computer

- Using fixed number of bits represent real numbers on a computer
- Once a base is agreed we store each number as two numbers and two signs
 - Mantissa and exponent
- Mantissa is usually "normalized"
- If we have infinite spaces to store these numbers, we can represent arbitrarily large numbers
- With a fixed number of spaces for the two numbers (mantissa and exponent)

Binary Floating Point Representation

- Same basic idea as scientific notation
- Modifications and improvements based on
 - Hardware architecture
 - Efficiency (Space & Time)
 - Additional requirements
 - Infinity
 - Not a number (NaN)
 - Not normalized
 - etc.

Floating point on a computer

- If we wanted to store 15 x 2^{11} , we would need 16 bits: $0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$
- Instead we store it as three numbers
- $(-1)^{S} \times F \times 2^{E}$, with F = 15 saved as 01111 and E = 11 saved as 01011.
- Now we can have fractions/decimals, too: binary $.101 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$.

IEEE - 754

Most nonzero floating-point numbers are normalized. This means they can be expressed as

 $x = \pm (1+f) \cdot 2^e$

The quantity f is the fraction or mantissa and e is the exponent. The fraction satisfies

$$0 \le f < 1$$

and must be representable in binary using at most 52 bits. In other words, $2^{52}f$ is an integer in the interval

$$0 \le 2^{52} f < 2^{52}$$

The exponent \boldsymbol{e} is an integer in the interval

 $-1022 \leq e \leq 1023$

The finiteness of f is a limitation on *precision*. The finiteness of e is a limitation on *range*. Any numbers that don't meet these limitations must be approximated by ones that do.

Double-precision floating-point numbers are stored in a 64 bit word, with 52 bits for f, 11 bits for e, and one bit for the sign of the number. The sign of e is accommodated by storing e + 1023, which is between 1 and $2^{11} - 2$. The two

Can be written							
	0	000000	00000000 0000		0000000000000000000000000000000000		
	s exponent		nent	mantissa (significand)			
	$\begin{bmatrix} i \\ g \\ n \end{bmatrix}$ (-1) ^s * 2 ^E * 1.f						
	f~=0 typica		== 0	0 0 < E+1023 < 2047 E+1023 == 2047			
			0		Powers of Two	8	
			Non-normalized typically underflow		Floating point Numbers	Not A Number	

- $x = \pm (1+f) \times 2^{e}$
- $0 \leq f < 1$
- $f = (integer < 2^{52})/2^{52}$
- $-1022 \le e \le 1023$
- e = integer

Effects of floating point

Finite *f* implies finite *precision*.

Finite *e* implies finite *range*

Floating point numbers have discrete spacing, a maximum and a minimum.

Effects of floating point

- eps is the distance from 1 to the next larger floating-point number.
- $eps = 2^{-52}$
- In Matlab

	Binary	Decimal
eps	2^(-52)	2.2204e-16
realmin	2^(-1022)	2.2251e-308
realmax	(2-eps)*2^1023	1.7977e+308

Rounding vs. Chopping

- **Chopping**: Store x as c, where |c| < |x| and no machine number lies between c and x.
- **Rounding**: Store x as r, where r is the machine number closest to x.
- IEEE standard arithmetic uses rounding.

Machine Epsilon

- **Machine epsilon** is defined to be the smallest positive number which, when added to 1, gives a number different from 1.
 - Alternate definition (1/2 this number)
- Note: Machine epsilon depends on d and on whether rounding or chopping is done, but does not depend on m or M!

- x = 1; while 1+x > 1, x = x/2, pause(.02), end
- x = 1; while x+x > x, x = 2*x, pause(.02), end
- x = 1; while x+x > x, x = x/2, pause(.02), end