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Computational Methods

CMSC/AMSC/MAPL 460

Errors in data and computation

Representing numbers in floating point

Ramani Duraiswami, 

Dept. of Computer Science

Class Outline

• Computations should be as accurate and as error-free as 

possible

• Sources of error:

• Poor models of a physical situation

• Ill-posed problems

• Errors due to representation of numbers on a computer 

and successive operations with these

– Examples from the book

– Scientific notation and Floating point representation

– Concepts: sign,  mantissa, base, exponent

– Distribution of floating point numbers

Error

• What we need to know about error:

– how does error arise

– how machines do arithmetic

• fixed point arithmetic

• floating point arithmetic

– how errors are propagated in calculations.

– how to measure error

Typical task that uses scientific computing

• Evaluate safety of a machine part

• Tasks

1. Measure the parts dimensions, shape etc. and discretize

it (e.g., via finite elements)

2. Determine the material it is made of

3. Find the mathematical models (equations) that 

determine how the part will deform according to loads

4. Discretize the equations (e.g., via finite elements)

5. Solve it on the computer
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Errors

• Each step is characterized by some error

1. Measurement errors: 

2. Errors in properties

3. Inexact mathematical models 

4. Discretization errors: something continuous is 

represented discretely

5. Errors in the solution to discrete representations of 

numbers

Errors are inevitable

• Everybody did the best they could

• No one made any  mistakes, yet answer could be wrong

• Goal of error analysis is to 

– determine when the answer can be relied upon

– Which algorithms can be trusted for which data

• In particular we will focus on errors in part 5 (finite 

representation of numbers today)

Job of a Numerical Analyst/Computational 

Scientitst

• Numerical analyst

– Designs algorithms and analyzes them

– Develops mathematical software

– Can provide some guarantees as to when the software will be 

accurate and when the final answer can be trusted

• Computational Scientist

– Knows about mathematical software

– Knows about the domain 

– Makes an intelligent choice to use the right tools for the job

Modeling

• Original mathematical models may be poorly specified 
or unavailable

– E.g. Newton’s laws work for non relativistic dynamics

– Turbulence

– …

• Computing with a poor model will lead to inevitable 
errors

• Quantities that are measured may be done so with error 
and bias

– Using them in computation will lead to errors

• Approaches to fix these errors are in the domain of 
statistics

– Will not be  much discussed in this course
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Well posed problems

• Hadamard postulated that for a problem to be “well 

posed”

1. Solution must exist

2. It must be unique

3. Small changes to input data should cause small changes to 

solution

• Many problems in science result in “ill-posed” problems.

– Numerically it is common to have condition 3 violated.

• Converting ill-posed problem to well-posed one is called 

regularization.

• Will discuss this later in the course when talking about 

optimization and Singular Value Decompositon.

Numerical Modeling and Measurement Errors

• Continuous mathematical models have to be represented 

in discrete form on the computer

– Finite-difference or finite-element discretization

– Continuous quantities may be represented using linear 

interpolants

– Model may only reach accurate answer in the limit

– Round-off errors – continuous numbers represented with 

discrete representations on the computer

• Focus of today’s class:

– What errors are caused by such representations

Fixed point representation

• How can we represent a number in a computer’s 
memory?

• Fixed point is an obvious way:

• Used to represent integers on computers, and real 
numbers on some DSPs:

• Each word (storage location) in a machine contains a 
fixed number of digits.

• Example: A machine with a 6-digit word might represent 
2005 as

• This only allows us to represent integers and uses a 
decimal system

500200

Binary/Decimal/Octal/Hexadecimal

• Numbers can be represented in different bases

• Usually humans use decimal

– Perhaps because we have ten fingers

• Computer memory often has two states

– Assigned to 0 and 1

– Leads to a binary representation

• Octal and Hexadecimal representations arise by 

considering 3 or 4 memory locations together 

– Lead to 2^3 and 2^4 numbers 
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Binary Representation

• Most computers use binary (base 2) representation.

0 1 0 1 1 0

• Each digit has a value 0 or 1.

• If the number above is binary, its value is

• 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 . (or 22 in base 10)

• Adding numbers in binary

• One way computers represent negative numbers is using the sign-
magnitude representation:

• Sign magnitude: if the first bit is zero, then the number is positive. 
Otherwise, it is negative.

• 0 0 0 1 1 Denotes +11.

• 1 0 0 1 1 Denotes -11.

Negative numbers

• Fixed point arithmetic:  

– Easy: always get an integer answer.

– Either we get exactly the right answer, or we can detect

– overflow.

– The numbers that we can store are equally spaced.

– Disadvantage: very limited range of numbers.

Scientific Notation

-6.023 x 10-23

Sign

Normalized
Mantissa

Base

Exponent

Sign of
Exponent
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Floating point on a computer

• Using fixed number of bits represent real numbers on a 

computer

• Once a base is agreed we store each number as two 

numbers and two signs

– Mantissa and exponent

• Mantissa is usually “normalized”

• If we have infinite spaces to store these numbers, we can 

represent arbitrarily large numbers

• With a fixed number of spaces for the two numbers 

(mantissa and exponent)

Binary Floating Point Representation

• Same basic idea as scientific notation

• Modifications and improvements based on 

– Hardware architecture

– Efficiency (Space & Time)

– Additional requirements

• Infinity 

• Not a number (NaN)

• Not normalized

• etc.

Floating point on a computer

• If we wanted to store 15 x 211 , we would need 16 bits:

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

• Instead we store it as three numbers

• (-1)S × F × 2E , with F = 15 saved as 01111 and E = 11 

saved as 01011.

• Now we can have fractions/decimals, too: 

binary .101 = 1 x 2-1 + 0 x 2-2 + 1 x 2-3 .

IEEE-754 (single precision)

0 00000000 00000000000000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 1.M * 2 E-127

Sign

1 is understood

Mantissa (w/o leading 1)

Base

Exponent

0 1         8 9                            31
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IEEE-754 (double precision)

0 0000000000 00000000000……000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 1.f * 2 e

Sign

1 is understood

Mantissa (w/o leading 1)

Base

Exponent

0 1           11 12                               63

IEEE - 754

Can be written...

0 00000000000 000000000000……000000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 2 E * 1.f

Non-normalized

typically

underflow

Floating point

Numbers

0
Powers

of

Two
∞

E+1023 == 0 0 < E+1023 < 2047 E+1023 == 2047

f==0

f~=0
Not

A

Number

• x = ±(1+f)× 2e

• 0 � f < 1

• f = (integer < 252)/ 252

• -1022 ≤ e ≤ 1023

• e = integer
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Effects of floating point Effects of floating point

• eps is the distance from 1 to the next larger floating-point 

number. 

• eps = 2-52 

• In Matlab 

Binary� Decimal

eps 2^(-52) 2.2204e-16

realmin 2^(-1022) 2.2251e-308

realmax (2-eps)*2^1023 1.7977e+308

Rounding vs. Chopping

• Chopping: Store x as c, where |c| < |x| and no machine 

number lies between c and x.

• Rounding: Store x as r, where r is the machine number 

closest to x.

• IEEE standard arithmetic uses rounding.

Machine Epsilon

• Machine epsilon is defined to be the smallest positive 

number which, when added to 1, gives a number different 

from 1.

– Alternate definition (1/2 this number)

• Note: Machine epsilon depends on d and on whether 

rounding or chopping is done, but does not depend on m 

or M!
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Some numbers cannot be exactly represented


