Computational Methods CMSC/AMSC/MAPL 460

Ramani Duraiswami, Dept. of Computer Science

Course Goals

- Introduction to the use of scientific computing techniques to solve problems in various domains
- Understand principles behind algorithms
- Intelligent choice and use of available software
- Understand how to
 - Convert a model into a discrete system on the computer
 - How to deal with data
 - perform simulations for applications
 - Display and evaluate simulation results
 - Appreciate which computations are feasible

"New Paradigm"

- Scientific Discovery through Computing
- Paradigm?
 - A set of assumptions, concepts, values, and practices that constitutes a way of viewing reality for the community that shares them, especially in an intellectual discipline.
- Engineering (aeronautics, fluid dynamics, circuit design, radar, antennas, signal processing, ...)
- Physics (stellar dynamics, materials, ...)
- Economics/Sociology (modeling and analyzing data, computational statistics, stock picking, ...)
- Biology (biostatistics, computational biology, genomics and proteomics, ...)
- Computer Science (modeling systems/network performance, information retrieval, ...)
- Your field ...

Another "paradigm": Data driven science

- Grab data and process it
- Audio, video, text, MRI, X-Ray, weather, strain-gage, flow, gene-chip, seismograph, ...
- Moore's law drives both processing power, memory, sensor cost and capability
 - Moore's law: Processor speed doubles every 18 months
 - More generally: Technology X capability will double in Y months
- Need algorithms to process larger and larger data sets, and extract information from them
 - Fit data, Extract model parameters, Learn relationships
 - In general compute with the data

The Course

- Two lectures a week
- Homework every week or other week
- 40% homework, 25% exam 1, 35 % final
 - Attendance/participation will be a factor
- Class web site:

http://www.umiacs.umd.edu/~ramani/cmsc460/index.html

• Required Book

Numerical Computing with MATLAB by Cleve Moler

- The good news
- The complete book is online!
- Book is also not as expensive as some others (~\$40)

Course

• Course comes with Matlab software that is downloadable from the book web site

Homework

- Homework will involve programming in MATLAB
- mainly problems from the text
- Style/Clarity/Cleanliness of output will count
- Work/Results must be easily understood to be interpreted
 - Visualization (graphs)
 - Commented code

Syllabus

- Introduction, Computer Arithmetic and Errors (Chapter 1) (approx. 3 lectures)
 - course survey
 - introduction to Matlab
 - machine arithmetic and error analysis
 - stability and conditioning
- Solving Linear Systems of Equations (Chapter 2) (approx. 4 lectures)
 - Gaussian elimination
 - well-conditioning vs. ill-conditioning, matrix and vector norms
 - Notions of algorithm complexity
 - sparse systems: direct and iterative methods

Syllabus

- Interpolation (Chapters 3) (approx. 4 lectures)
 - polynomial interpolation
 - Other basis functions and polynomials
 - piecewise polynomial interpolation
 - spline interpolation
- Zeros and Roots (Chapter 4) (approx. 3 lectures)
 - Linear and Nonlinear systems of equations
 - Bisection, Secant and Newton method
 - Introduction to optimization
- Solving Linear Least Squares Problems (Chapter 5) (approx. 3 lectures)
 - data-fitting and least squares
 - QR factorization

Syllabus

- Integration/Quadrature (Chapter 6)
 - elementary integration formulas (midpoint, trapezoid, etc.)
 - compound and adaptive integration formulas
 - Gaussian quadrature
- Fourier Analysis (Chapter 8)
- Ordinary Differential Equations (Chapter 9) (approx. 4 lectures)
 - ordinary differential equations and Euler's method
 - adaptive methods for ordinary differential equations
 - methods for stiff systems

MATLAB Overview

- History of MATLAB
- Strengths of MATLAB
- Weaknesses of MATLAB

What is MATLAB?

- MATLAB
 - MATrix LABoratory
 - Interactive system
 - Programming language
 - Extendable

What is MATLAB ?: 2

- Considering MATLAB at home
 - Standard edition
 - Available for roughly 2 thousand dollars
 - Student edition
 - Available for roughly 1 hundred dollars.
 - Some limitations
 - Shorter license period
- On campus
 - Site license

History of MATLAB

- Ancestral software to MATLAB
 - Fortran subroutines for solving linear (LINPACK) and eigenvalue (EISPACK) problems

History of MATLAB, con't: 2

- One of the developers of these packages, Cleve Moler wanted his students to be able to use LINPACK and EISPACK without requiring knowledge of Fortran
- MATLAB developed as an interactive system to access LINPACK and EISPACK

History of MATLAB, con't: 3

- MATLAB gained popularity primarily through word of mouth because it was not officially distributed
- In the 1980's, MATLAB was rewritten in C with more functionality (such as plotting routines)
- Commercialized by a company (The Mathworks)
- In many fields it is the software for quantitative analysis
 - Finance, biology, defence, image processing, audio, etc.
- Some competing packages
 - Octave (an open source alternative)
 - Mathematica, IDL, ...

Strengths of MATLAB

- MATLAB is relatively easy to learn
- MATLAB code is optimized to be relatively quick when performing matrix operations
- MATLAB may behave like a calculator or as a programming language
- MATLAB is interpreted, errors are easier to fix
- Although primarily procedural, MATLAB does have some object-oriented elements

Weaknesses of MATLAB

- MATLAB is NOT a general purpose programming language
- MATLAB is usually used as an interpreted language (making it for the most part slower than a compiled language such as C++)
- MATLAB is designed for scientific computation and is not suitable for some things (such as parsing text)

Matlab Windows

- o Command line Interface (Main Window)
- o Editor Window

Matrices in Matlab

o Entering a Matrix:	>> A(:,1)
>> A = [0 -0.8 -0.6 ; 0.8 -0.36 0.48 ; 0.6 0.48 -0.64] A =	ans =
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0.8000 0.6000
o Matrix referencing:	o Matrix Operations:
>> A(1,2) ans = -0.8000	>> A+A; >> A.*A; >> 3*A; >> A*A
>> A(2,:) ans =	ans = $-1.0000 0 0$
0.8000 -0.3600 0.4800	$\begin{array}{cccc} 0 & -0.2800 & -0.9600 \\ 0 & -0.9600 & 0.2800 \end{array}$

Built-in functions

0	Determinant	ans =
	>> det(A)	-0.0000 0.8000 0.6000
	ans =	-0.8000 -0.3600 0.4800
		-0.6000 0.4800 -0.6400
	-1.000	o Transpose of a Matrix
0	Rank	>> A'
	>> rank(A)	ans =
	ans =	0 0.8000 0.6000
	3	$\begin{array}{rrrr} -0.8000 & -0.3600 & 0.4800 \\ -0.6000 & 0.4800 & -0.6400 \end{array}$

Solving Linear System

o Linear system of algebraic equations:

>> A = [-1 1 2; 3 -1 1; -1 3 4]

A =

4

>> rank(A)

ans =

3

$>> x = b \backslash A$

(also could do inv(A)*b, but not recommended)

 $\mathbf{x} =$

1.0000 -1.0000 2.0000

Ax = b

 $-x_1 + x_2 + 2x_3 = 2$

 $3x_1 - x_2 + x_3 = 6$

 $-x_1 + 3x_2 + 4x_3 = 4$

Plotting a function

$$y_{1} = \frac{7x}{0.6 + x} \qquad y_{2} = \frac{5x}{0.08 + x}$$

>> x = [0:0.01:5];
>> y1 = 7 * x ./ (0.6 + x);
>> y2 = 5 * x ./ (0.08 + x);
>> plot(x,y1,x,y2)
>> legend('y1','y2')

Introduction to MATLAB

- Vectors, Matrices, Syntax
- Vector operations, including the \dot commands
 - length, size, linspace, logspace, size, rand, randn, randperm
- Special vectors and matrices: zeros, ones, eye, magic
- Scripts and functions
 - Diary
- Graphing:
 - plot, special fonts, plot3, semilogx, semilogy, title, xlabel, ylabel, axis, grid, legend, subplot,
- Formatted output:
 - Sprintf, ;, disp, input
- Programming:
 - for, if, while, &, |, ~
- General/misc commands
 - ginput set, size, max, sum, close, figure, hist, any, all, floor, fix, round,
- Graphical programming and callbacks