Computational Methods
 CMSC/AMSC/MAPL 460

Ramani Duraiswami,
Dept. of Computer Science

Course Goals

- Introduction to the use of scientific computing techniques to solve problems in various domains
- Understand principles behind algorithms
- Intelligent choice and use of available software
- Understand how to
- Convert a model into a discrete system on the computer
- How to deal with data
- perform simulations for applications
- Display and evaluate simulation results
- Appreciate which computations are feasible

"New Paradigm"

- Scientific Discovery through Computing
- Paradigm?
- A set of assumptions, concepts, values, and practices that constitutes a way of viewing reality for the community that shares them, especially in an intellectual discipline.
- Engineering (aeronautics, fluid dynamics, circuit design, radar, antennas, signal processing, ...)
- Physics (stellar dynamics, materials, ...)
- Economics/Sociology (modeling and analyzing data, computational statistics, stock picking, ...)
- Biology (biostatistics, computational biology, genomics and proteomics, ...)
- Computer Science (modeling systems/network performance, information retrieval, ...)
- Your field ...

Another "paradigm": Data driven science

- Grab data and process it
- Audio, video, text, MRI, X-Ray, weather, strain-gage, flow, gene-chip, seismograph, ...
- Moore's law drives both processing power, memory, sensor cost and capability
- Moore's law: Processor speed doubles every 18 months
- More generally: Technology X capability will double in Y months
- Need algorithms to process larger and larger data sets, and extract information from them
- Fit data, Extract model parameters, Learn relationships
- In general compute with the data

The Course

- Two lectures a week
- Homework every week or other week
- 40% homework, 25% exam 1, 35% final
- Attendance/participation will be a factor
- Class web site:
http://www.umiacs.umd.edu/~ramani/cmsc460/index.html
- Required Book

Numerical Computing with MATLAB by Cleve Moler

- The good news
- The complete book is online!
- Book is also not as expensive as some others ($\sim \$ 40$)

Course

- Course comes with Matlab software that is downloadable from the book web site

Homework

- Homework will involve programming in MATLAB
- mainly problems from the text
- Style/Clarity/Cleanliness of output will count
- Work/Results must be easily understood to be interpreted
- Visualization (graphs)
- Commented code

Syllabus

- Introduction, Computer Arithmetic and Errors (Chapter 1) (approx. 3 lectures)
- course survey
- introduction to Matlab
- machine arithmetic and error analysis
- stability and conditioning
- Solving Linear Systems of Equations (Chapter 2) (approx. 4 lectures)
- Gaussian elimination
- well-conditioning vs. ill-conditioning, matrix and vector norms
- Notions of algorithm complexity
- sparse systems: direct and iterative methods

Syllabus

- Interpolation (Chapters 3) (approx. 4 lectures)
- polynomial interpolation
- Other basis functions and polynomials
- piecewise polynomial interpolation
- spline interpolation
- Zeros and Roots (Chapter 4) (approx. 3 lectures)
- Linear and Nonlinear systems of equations
- Bisection, Secant and Newton method
- Introduction to optimization
- Solving Linear Least Squares Problems (Chapter 5) (approx. 3 lectures)
- data-fitting and least squares
- QR factorization

Syllabus

- Integration/Quadrature (Chapter 6)
- elementary integration formulas (midpoint, trapezoid, etc.)
- compound and adaptive integration formulas
- Gaussian quadrature
- Fourier Analysis (Chapter 8)
- Ordinary Differential Equations (Chapter 9) (approx. 4 lectures)
- ordinary differential equations and Euler's method
- adaptive methods for ordinary differential equations
- methods for stiff systems

MATLAB Overview

- History of MATLAB
- Strengths of MATLAB
- Weaknesses of MATLAB

What is MATLAB?

- MATLAB
- MATrix LABoratory
- Interactive system
- Programming language
- Extendable

What is MATLAB ?: 2

- Considering MATLAB at home
- Standard edition
- Available for roughly 2 thousand dollars
- Student edition
- Available for roughly 1 hundred dollars.
- Some limitations
- Shorter license period
- On campus
- Site license

History of MATLAB

- Ancestral software to MATLAB
- Fortran subroutines for solving linear (LINPACK) and eigenvalue (EISPACK) problems

History of MATLAB, con't: 2

- One of the developers of these packages, Cleve Moler wanted his students to be able to use LINPACK and EISPACK without requiring knowledge of Fortran
- MATLAB developed as an interactive system to access LINPACK and EISPACK

History of MATLAB, con't: 3

- MATLAB gained popularity primarily through word of mouth because it was not officially distributed
- In the 1980 's, MATLAB was rewritten in C with more functionality (such as plotting routines)
- Commercialized by a company (The Mathworks)
- In many fields it is the software for quantitative analysis
- Finance, biology, defence, image processing, audio, etc.
- Some competing packages
- Octave (an open source alternative)
- Mathematica, IDL, ...

Strengths of MATLAB

- MATLAB is relatively easy to learn
- MATLAB code is optimized to be relatively quick when performing matrix operations
- MATLAB may behave like a calculator or as a programming language
- MATLAB is interpreted, errors are easier to fix
- Although primarily procedural, MATLAB does have some object-oriented elements

Weaknesses of MATLAB

- MATLAB is NOT a general purpose programming language
- MATLAB is usually used as an interpreted language (making it for the most part slower than a compiled language such as $\mathrm{C}++$)
- MATLAB is designed for scientific computation and is not suitable for some things (such as parsing text)

Matlab Windows

o Command line Interface (Main Window)
o Editor Window

Matrices in Matlab


```
>> A(:,1)
ans =
0
    0.8000
    0.6000
```

o Matrix Operations:

```
> A+A;
> A.*A;
>> 3*A;
>>A*A
    ans =
    -1.0000 0 0
    0
    0
```


Built-in functions

o $\begin{gathered}\text { Determinant } \\ \gg \operatorname{det}(\mathrm{A}) \\ \text { ans }=\end{gathered}$
$\quad-1.000$
o Rank

```
>> rank(A)
ans =
3
```

o Inverting a Matrix
$\gg \operatorname{inv}(\mathrm{A})$
ans $=$

$$
\begin{array}{ccc}
-0.0000 & 0.8000 & 0.6000 \\
-0.8000 & -0.3600 & 0.4800 \\
-0.6000 & 0.4800 & -0.6400
\end{array}
$$

o Transpose of a Matrix >> A'
ans $=$

$$
\begin{array}{ccc}
0 & 0.8000 & 0.6000 \\
-0.8000 & -0.3600 & 0.4800 \\
-0.6000 & 0.4800 & -0.6400
\end{array}
$$

Solving Linear System

Linear system of algebraic equations:

$$
-x_{1}+x_{2}+2 x_{3}=2
$$

$$
3 x_{1}-x_{2}+x_{3}=6
$$

$$
-x_{1}+3 x_{2}+4 x_{3}=4
$$

$$
A x=b
$$

$\gg \mathrm{A}=\left[\begin{array}{lllllllll}-1 & 1 & 2 & 3 & -1 & 1 & -1 & -1 & 4\end{array}\right]$
$\mathrm{A}=$
$\begin{array}{rr}-1 & 1 \\ 3 & -1 \\ & 1\end{array}$
$\begin{array}{lll}-1 & 3 & 4\end{array}$
$\gg b=\left[\begin{array}{lll}2 & 6 & 4\end{array}\right]$
$\mathrm{b}=$
2
6
> $\operatorname{rank}(\mathrm{A})$
ans $=$
3
$\gg \mathrm{x}=\mathrm{b} \backslash \mathrm{A}$
(also could do inv(A)*b, but not recommended)
$x=$
1.0000
-1.0000
2.0000

Plotting a function

$$
\begin{aligned}
& \mathrm{y}_{1}=\frac{7 \mathrm{x}}{0.6+\mathrm{x}} \quad \mathrm{y}_{2}=\frac{5 \mathrm{x}}{0.08+\mathrm{x}} \\
&>\mathrm{x}=[0: 0.01: 5] ; \\
& \gg y 1=7 * x . /(0.6+\mathrm{x}) ; \\
& \gg y 2=5 * x . /(0.08+\mathrm{x}) ; \\
& \gg \operatorname{plot}(\mathrm{x}, \mathrm{y} 1, \mathrm{x}, \mathrm{y} 2) \\
& \gg \operatorname{legend}\left(' y 1^{\prime}, ' y 2 '\right)
\end{aligned}
$$

Introduction to MATLAB

- Vectors, Matrices, Syntax
- Vector operations, including the \dot commands
- length, size, linspace, logspace, size, rand, randn, randperm
- Special vectors and matrices: zeros, ones, eye, magic
- Scripts and functions
- Diary
- Graphing:
- plot, special fonts, plot3, semilogx, semilogy, title, xlabel, ylabel, axis, grid, legend, subplot,
- Formatted output:
- Sprintf, ;, disp, input
- Programming:
- for, if, while, \&, |, ~
- General/misc commands
- ginput set, size, max, sum, close, figure, hist, any, all, floor, fix, round,
- Graphical programming and callbacks

