Computational Methods
CMSC/AMSC/MAPL 460

Ordinary differential equations

Ramani Duraiswami,
Dept. of Computer Science

Several slides adapted from Profs. Dianne O’Leary and Eric Sandt, TAMU
Ordinary differential equations

- Mathematical modeling involves posing models and then solving these models numerically or analytically
- ODEs represent a powerful method of modeling
 - Especially if things depend on rates of change
- Rate of change of distance is velocity
 \[v = \frac{dx}{dt} \]
 \[x(t) = \int_0^t \frac{dx}{d\tau} d\tau \]
- Knowing the velocity as a function of \(\tau \) we can integrate using numerical quadrature
- Rate of change of velocity is acceleration
 \[a = \frac{dv}{dt} = \frac{d^2x}{dt^2} \]
- Given initial conditions \((v(0)=0, x(0)=0) \) find the location \(x(t) \) at time \(t \) given that the object falls with a constant acceleration of 10 m/s\(^2\)
Solution by simple integration

\[\int dv = \int 10 \, dt \]
\[v = 10 \, t + c_1 \]
\[\int dx/dt \, dt = \int 10t \, dt \]
\[x = 10t^2/2 + c_1 \, t + c_2 \]

- Use initial conditions
- \(v(0)=0 \) so \(c_1 \) is zero
- \(x(0)=0 \) so \(c_2 \) is zero
- Final solution \(x=5t^2 \)
- Could handle more complex functions of \(t \) under the integral

\[\frac{dx}{dt} = f(t) \quad x(t) = \int_0^t f(\tau) \, d\tau \]
What if simple integration would not work?

- Example: Let the velocity be a function of x and t
- $\frac{dx}{dt}=f(x,t)$
- Cannot be simply integrated
- This is the typical type of problem we need to solve in ODEs
- This is nonlinear because solution x depends on itself
- The linear case could be solved using numerical quadrature

$x(t) = \int_{0}^{t} f(x(\tau), \tau) d\tau$
Writing a 2nd order system in standard form

• ODEs in standard form: way they are input to software
• Written as a set of 1st order equations with initial conditions

\[u'' = g(t, u, u') \]
\[u(0) = u_0 \]
\[u'(0) = v_0 \]

• where \(u_0 \) and \(v_0 \) are given.
• Let \(y_1 = u \) and \(y_2 = u' \). Then, in standard form:

\[y_2' = g(t, y_1, y_2) \]
\[y_1' = y_2 \]
\[y_1(0) = u_0 \quad y_2(0) = v_0 \]
Standard form

- We'll work with problems in **standard form**,

\[y' = f(t; y) \]

\[y(0) = y_0 \]

- where the function \(y \) has \(m \) components,
- \(y' \) means the derivative with respect to \(t \), and
- \(y_0 \) is a given vector of initial conditions (numbers).
- Writing this component-by-component yields

\[y'_{(1)} = f_1(t, y_{(1)} \ldots y_{(m)}) \]

\[y'_{(m)} = f_m(t, y_{(1)} \ldots y_{(m)}) \]

with \(y_{(1)}(t_0), \ldots, y_{(m)}(t_0) \) given initial conditions
A modeling exercise: predator prey problems

- Eco-system (island) that contains rabbits and foxes
- Island has plenty of food for rabbits
- Rabbits reproduce like crazy and would fill-up the island
- Foxes eat rabbits
- Let $r(t)$ represent the number of rabbits and $f(t)$ the number of foxes.
- Model the number of rabbits and foxes on the island and decide if it will reach an equilibrium
Rabbit and fox population

• Rabbit population will grow at a certain rate
 – a is the natural growth rate of rabbits in the absence of predation,
• Rabbits will die as they are eaten by foxes. Let the rabbit die if it encounters a fox.
 – b is the death rate per encounter of rabbits due to predation,
• Fox population dies off if they cannot eat rabbits
 – c is the natural death rate of foxes in the absence of food (rabbits),
• Foxes reproduce if they have food
 – e is the efficiency of turning predated rabbits into foxes.
• Initial conditions $R(0)=r_0$ and $F(0)=f_0$
• Volterra equations
 \[
 \frac{dR}{dt} = aR - bRF \\
 \frac{dF}{dt} = ebRF - cF
 \]
Standard form

- Volterra’s model
 \[
 \frac{dR}{dt} = 2R - \alpha RF \\
 \frac{dF}{dt} = \alpha RF - F
 \]

- Another example from the book
 \[
 \ddot{u}(t) = -\frac{u(t)}{r(t)^3} \\
 \ddot{v}(t) = -\frac{v(t)}{r(t)^3}
 \]
 where
 \[
 r(t) = \sqrt{u(t)^2 + v(t)^2}
 \]
 The vector \(y(t)\) has four components,
 \[
 y(t) = \begin{bmatrix} u(t) \\ v(t) \\ \dot{u}(t) \\ \dot{v}(t) \end{bmatrix}
 \]
 The differential equation is
 \[
 \dot{y}(t) = \begin{bmatrix} \dot{u}(t) \\ \dot{v}(t) \\ -\frac{u(t)}{r(t)^3} \\ -\frac{v(t)}{r(t)^3} \end{bmatrix}
 \]
 function ydot = twobody(t,y)
 r = sqrt(y(1)^2 + y(2)^2);
 ydot = [y(3); y(4); -y(1)/r^3; -y(2)/r^3];
Solving differential equations: Euler’s method

- As in quadrature: use Taylor series
- Euler’s method

\[y(t + h) = y(t) + hy'(t) + h^2/2 \quad y''(\xi) \]

for some point \(\xi \) in \([t, \leq t + h]\)

- Note that

\[y'(t) = f(t, y(t)). \]

- **March forward**

\[y(h) = y_1 = y(0) + hy'(0) \]
\[= y_0 + hf(t_0, y_0) \]
\[y_{n+1} = y_n + hf_n \]
Example

Consider

\[\frac{dy}{dx} = x + y \]

The initial conditions is :

\[y(0) = 1 \]

The analytical solution

\[y(x) = 2e^x - x - 1 \]
Euler’s Method: First-order Taylor Method

\[\frac{dy}{dx} = y' = f(x, y); \quad y(x_0) = y_0 \]

Straight line approximation
Euler’s Method Example

Consider

\[\frac{dy}{dx} = x + y \]

The initial condition is:

\[y(0) = 1 \]

The step size is:

\[\Delta h = 0.02 \]

The analytical solution is:

\[y(x) = 2e^x - x - 1 \]
Euler’s Method Example

The algorithm has a loop using the initial conditions and definition of the derivative

The derivative is calculated as:

\[y'_i = x_i + y_i \]

The next y value is calculated:

\[y_{i+1} = y_i + \Delta h \ y'_i \]

Take the next step:

\[x_{i+1} = x_i + \Delta h \]
Euler’s Method Example

The results

<table>
<thead>
<tr>
<th>x_n</th>
<th>y_n</th>
<th>y'_n</th>
<th>$h y'_n$</th>
<th>Exact Solution</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.02000</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.02</td>
<td>1.02000</td>
<td>1.04000</td>
<td>0.02080</td>
<td>1.02040</td>
<td>-0.00040</td>
</tr>
<tr>
<td>0.04</td>
<td>1.04080</td>
<td>1.08080</td>
<td>0.02162</td>
<td>1.04162</td>
<td>-0.00082</td>
</tr>
<tr>
<td>0.06</td>
<td>1.06242</td>
<td>1.12242</td>
<td>0.02245</td>
<td>1.06367</td>
<td>-0.00126</td>
</tr>
<tr>
<td>0.08</td>
<td>1.08486</td>
<td>1.16486</td>
<td>0.02330</td>
<td>1.08657</td>
<td>-0.00171</td>
</tr>
<tr>
<td>0.1</td>
<td>1.10816</td>
<td>1.20816</td>
<td>0.02416</td>
<td>1.11034</td>
<td>-0.00218</td>
</tr>
<tr>
<td>0.12</td>
<td>1.13232</td>
<td>1.25232</td>
<td>0.02505</td>
<td>1.13499</td>
<td>-0.00267</td>
</tr>
<tr>
<td>0.14</td>
<td>1.15737</td>
<td>1.29737</td>
<td>0.02595</td>
<td>1.16055</td>
<td>-0.00318</td>
</tr>
<tr>
<td>0.16</td>
<td>1.18332</td>
<td>1.34332</td>
<td>0.02687</td>
<td>1.18702</td>
<td>-0.00370</td>
</tr>
<tr>
<td>0.18</td>
<td>1.21019</td>
<td>1.39019</td>
<td>0.02780</td>
<td>1.21443</td>
<td>-0.00425</td>
</tr>
<tr>
<td>0.2</td>
<td>1.23799</td>
<td>1.43799</td>
<td>0.02876</td>
<td>1.24281</td>
<td>-0.00482</td>
</tr>
</tbody>
</table>
Euler’s Method

The trouble with this method is

– Lack of accuracy
– Small step size needed for accuracy
Backward Euler

• We approximated the derivative at the initial point.
• In backward let us approximate it at the final point
• Find y_{n+1} so that

$$y_{n+1} = y_n + hf(t_{n+1}; y_{n+1})$$

• Taylor series derivation

$$y(t) = y(t+h) - hy'(t+h) + \frac{1}{2} h^2 y''(\xi)$$

$$y_{n+1} = y_n + hf_{n+1}$$

• How can we use it? Must solve a non-linear equation
• Generally not used in this way, but as a “correction step” in a “predictor-corrector” scheme.
Modified Euler Method

The Modified Euler method uses the slope at both old and the new location and is a predictor-corrector technique.

\[y_{n+1} = y_n + \Delta h \left(\frac{y'_n + y'_{n+1}}{2} \right) + O(\Delta h^2) \]

The method uses the average slope between the two locations.
Modified Euler Method

The algorithm will be:

\[y'_n = f(x_n, y_n) \]
\[y^*_n = y_n + \Delta h \ y'_n \]

Initial guess of the value

\[y'_{n+1} = f(x_{n+1}, y^*_n) \]

Updated value

\[y_{n+1} = y_n + \Delta h \left(\frac{y'_n + y'_{n+1}}{2} \right) \]
Modified Euler’s Method Example

Consider

\[
\frac{dy}{dx} = x + y
\]

The initial condition is: \(y(0) = 1 \)

The step size is: \(\Delta h = 0.02 \)

The analytical solution is:

\[
y(x) = 2e^x - x - 1
\]
Modified Euler’s Method Example

The results are:

<table>
<thead>
<tr>
<th>x_n</th>
<th>y_n</th>
<th>y'_n</th>
<th>$h(y'_n)$</th>
<th>y_{n+1}</th>
<th>y'_{n+1}</th>
<th>Estimated $h(y'_{n+1})/2$</th>
<th>Solution $h(y'_{n+1})/2$</th>
<th>Average Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.02000</td>
<td>1.02000</td>
<td>1.04000</td>
<td>0.02040</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.02</td>
<td>1.02040</td>
<td>1.04040</td>
<td>0.02081</td>
<td>1.04121</td>
<td>1.08121</td>
<td>0.02122</td>
<td>1.02040</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.04</td>
<td>1.04162</td>
<td>1.08162</td>
<td>0.02163</td>
<td>1.06325</td>
<td>1.12325</td>
<td>0.02205</td>
<td>1.04162</td>
<td>-0.00001</td>
</tr>
<tr>
<td>0.06</td>
<td>1.06366</td>
<td>1.12366</td>
<td>0.02247</td>
<td>1.08614</td>
<td>1.16614</td>
<td>0.02290</td>
<td>1.06367</td>
<td>-0.00001</td>
</tr>
<tr>
<td>0.08</td>
<td>1.08656</td>
<td>1.16656</td>
<td>0.02333</td>
<td>1.10989</td>
<td>1.20989</td>
<td>0.02376</td>
<td>1.08657</td>
<td>-0.00001</td>
</tr>
<tr>
<td>0.1</td>
<td>1.11033</td>
<td>1.21033</td>
<td>0.02421</td>
<td>1.13453</td>
<td>1.25453</td>
<td>0.02465</td>
<td>1.11034</td>
<td>-0.00001</td>
</tr>
<tr>
<td>0.12</td>
<td>1.13498</td>
<td>1.25498</td>
<td>0.02510</td>
<td>1.16008</td>
<td>1.30008</td>
<td>0.02555</td>
<td>1.13499</td>
<td>-0.00002</td>
</tr>
<tr>
<td>0.14</td>
<td>1.16053</td>
<td>1.30053</td>
<td>0.02601</td>
<td>1.18654</td>
<td>1.34654</td>
<td>0.02647</td>
<td>1.16055</td>
<td>-0.00002</td>
</tr>
<tr>
<td>0.16</td>
<td>1.18700</td>
<td>1.34700</td>
<td>0.02694</td>
<td>1.21394</td>
<td>1.39394</td>
<td>0.02741</td>
<td>1.18702</td>
<td>-0.00002</td>
</tr>
<tr>
<td>0.18</td>
<td>1.21441</td>
<td>1.39441</td>
<td>0.02789</td>
<td>1.24229</td>
<td>1.44229</td>
<td>0.02837</td>
<td>1.21443</td>
<td>-0.00003</td>
</tr>
<tr>
<td>0.2</td>
<td>1.24277</td>
<td>1.44277</td>
<td>0.02886</td>
<td>1.27163</td>
<td>1.49163</td>
<td>0.02934</td>
<td>1.24281</td>
<td>-0.00003</td>
</tr>
</tbody>
</table>
MEM: Improves order of the method

If we were to look at the Taylor series expansion

\[y'_{n+1} = y_n + h \, y'_n + \frac{1}{2} h^2 \, y''_n + O(h^3) \]

Use a forward difference to represent the 2nd derivative

\[y'_{n+1} = y_n + h \, y'_n + \frac{1}{2} h^2 \left(\frac{y'_{n+1} - y'_n}{h} + O(h) \right) + O(h^3) \]

\[= y_n + h \, y'_n + \frac{1}{2} h y'_{n+1} - \frac{1}{2} h y'_n + O(h^3) \]

\[= y_n + h \left(\frac{y'_{n+1} + y'_n}{2} \right) + O(h^3) \]
Predictor Corrector methods

- **P** (predict): Guess y_{n+1} (e.g., using Euler's method).
- **E** (evaluate): Evaluate $f_{n+1} = f(t_{n+1}; y_{n+1})$.
- **C** (correct): Plug the current guess in, to get a new guess:
 \[y_{n+1} = y_n + h_n f_{n+1} : \]
- **E**: Evaluate
 \[f_{n+1} = f(t_{n+1}; y_{n+1}) . \]
- Repeat the CE steps if necessary.
- We call this a PECE (or PE(CE)k) scheme.