Least squares method: least squares

Ramani Duraiswami,
Dept. of Computer Science

Least Squares –Lecture 15 Recap
• We wish to solve

\[\mathbf{A} \mathbf{c} = \mathbf{y} \]

\(\mathbf{A} \) is a \(m \times n \) matrix, \(\mathbf{c} \) is a \(n \) vector, and \(\mathbf{y} \) is a \(m \) vector
• Number of equations and unknowns may not match
• Look for solution \(\mathbf{c} \) that minimizes same cost function
 – Sum of squares of residuals
• Associated with each data point \(x_i \) is a residual \(r_i \)
• Define cost function: \(F(\mathbf{c}) = \| \mathbf{A} \mathbf{c} - \mathbf{y} \|_2^2 \)

\[
F(\mathbf{c}) = \sum_{i=1}^{m} r_i^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} c_j - y_i \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} c_j - y_i \right) \left(\sum_{k=1}^{n} A_{ik} c_k - y_i \right)
\]
Solution 1: Normal Equations – Lecture 15

• Differentiate cost function and set to zero
\[
\frac{\partial F}{\partial c_i} = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} A_{kj} \frac{\partial c_k}{\partial c_i} \right) + \left(\sum_{j=1}^{n} A_{ji} \frac{\partial c_j}{\partial c_i} \right) + \left(\sum_{k=1}^{n} A_{ik} \frac{\partial c_k}{\partial c_i} \right) = 0
\]

• Leads to:
\[
2\left(A^t A c - A^t y \right) = 0 \quad \text{or} \quad [A^t A]c = A^t y
\]

• Can be solved via LU decomposition of \([A^t A]\)
• However is ill-conditioned and expensive
• Both arise because we compute the matrix \([A^t A]\)

Solution 2: QR decomposition : Lecture 16

• QR decomposition of \(A\)
\[
A_{m \times n} = Q'_{m \times m} R'_{m \times n}
\]

\[
\begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{m1} & \cdots & A_{mn}
\end{bmatrix} =
\begin{bmatrix}
Q_{11}' & \cdots & Q_{1n}' & \cdots & Q_{1m}' \\
\vdots & \ddots & \vdots \\
Q_{m1}' & \cdots & Q_{mn}' & \cdots & Q_{mn}'
\end{bmatrix}
\begin{bmatrix}
R_{11}' & \cdots & R_{1n}' \\
0 & \ddots & \vdots \\
0 & 0 & R_{nn}'
\end{bmatrix}
\]

• Note the multiplication with zero terms. So the “economy size” version of this decomposition is
\[
\begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{m1} & \cdots & A_{mn}
\end{bmatrix} =
\begin{bmatrix}
Q_{11}' & \cdots & Q_{1n}' \\
\vdots & \ddots & \vdots \\
Q_{m1}' & \cdots & Q_{mn}'
\end{bmatrix}
\begin{bmatrix}
R_{11}' & \cdots & R_{1n}' \\
0 & \ddots & \vdots \\
0 & 0 & R_{nn}'
\end{bmatrix}
\]

\[
A_{m \times n} = Q_{m \times n} R_{n \times n}
\]
Least Squares via QR: Lecture 16

• Minimizing $||r||_2$ is the same as minimizing $||Q^T r||_2$

$$Q^T r = Q^T y - Q^T A c = b - Q^T Q'R'c = b - R'c$$

• So we wish to minimize $||b - R'c||_2$

• Split b in to two pieces
 - b_1 of dimension n
 - b_2 of dimension $m-n$

$$||r||_2 = ||b_1 - Rc||_2 + ||b_2 - 0c||_2$$

• So no matter what c is the second term remains unchanged

• Solve least squares by solving triangular system

$$Rc = b_1$$

Today: Computing the factorization

• QR is useful … so how do we factorize a matrix A?

• In LU we reduced a square matrix A to a upper triangular matrix U by
 - adding multiples of other rows so elements in a given column below the row were zeroed out
 - multipliers were stored in L which gave us $A=LU$

• Here we want to do the same for a rectangular matrix
 - zero out entries below the diagonal
 - but do it with orthogonal matrices

• Today: Givens Rotations

• Zero out one specific entry of a column at a time
 - Use 2D rotations
Rotation

A 2 × 2 rotation matrix is of the form

\[A = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix}, \]

and has determinant 1:

- \(A \) is a 2 × 2 orthogonal matrix

Reflection

An example of a 2 × 2 reflection matrix, reflecting about the \(y \) axis, is

\[A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \]

which has determinant -1:

- Reflection is an orthogonal matrix
Permutation = Reflection

Another example of a reflection is a permutation matrix:

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \]

which has determinant -1:

- This reflection is about the 45° line \(x = y \).

To compute QR

- Perform a sequence of orthogonal transformations that zero out elements
- Orthogonal transformations can be rotations or reflections or combinations
- Givens Rotation:
- Givens matrix has elements
- \(c^2 + s^2 = 1 \)
• How do we use a rotation to zero out an element?

• Let \(\mathbf{z} =
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix}
\)

• We want \(G\mathbf{z} =
\begin{bmatrix}
 cz_1 + s z_2 \\
 sz_1 - cz_2
\end{bmatrix} = x e_1 \)

\[c = z_1 / x \]

\[s = z_2 / x, \quad \text{and} \quad z_i^2 + z_j^2 = x^2 \]

Givens QR

• To apply idea to larger matrix, embed the Givens matrix in identity matrix. We will use the notation \(G_{ij} \) to denote an \(n \times n \) identity matrix with its \(i \)th and \(j \)th rows modified to include the Givens rotation: for example, if \(n = 6 \), then

\[
G_{25} =
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & c & 0 & 0 & s & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & s & 0 & 0 & -c & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

and multiplication of a vector by this matrix leaves all but rows 2 and 5 of the vector unchanged.

This matrix zeroes out the (5,2) element of a matrix.

• The matrix \(G_{ij} \) works on the \((j,i)\) element of the matrix
Algorithm

- Algorithm

 for $i=1, \ldots, n$
 for $j=i+1, \ldots, m$
 // Find Givens matrix G_{ij} to zero out j,i element of A
 // using the the value at position (i,i)
 // compute x, c, s
 // embed them in the identity
 $A = G_{ij}A$
 end
end