Error analysis

- The formulas all have the form

\[Q(f) = \sum_{i=1}^{m} \alpha_i f(t_i) \]

- The error function

\[R(f) = I(f) - Q(f) \]

is a linear operator; i.e., for every two functions \(f \) and \(g \), and for every two scalars \(\beta \) and \(\gamma \),

\[R(\beta f + \gamma g) = \beta R(f) + \gamma R(g) . \]

(We restrict \(f \) and \(g \) to lie in some function space; for example, we need a certain number of continuous derivatives in order for the polynomial error formula to apply.)
Formula for trapezoidal rule

If \(f(t) \) and its 1\(^{\text{st}} \) two derivatives are continuous on \([a,b]\), then

\[
\int_a^b f(t)dt - T = -\frac{(b-a)^3}{12} f''(\eta)
\]

where \(\eta \in [a,b] \).

Proof: The trapezoidal rule is computed by integrating the linear interpolant to \(f(t) \) at \(a \) and \(b \).

From our work on polynomial interpolation, we know that, for the linear interpolant,

\[
f(t) - p(t) = f[a, b, t](t - a)(t - b),
\]

so

\[
\int_a^b f(t)dt - T = \int_a^b f[a, b, t](t - a)(t - b)dt
\]
Error trapezoidal rule

Recall the **Integral Mean Value Theorem**: If $w(t)$ doesn’t change sign on $[a, b]$ then

$$\int_a^b w(t)f(t) = f(\xi) \int_a^b w(t)dt$$

for some point $\xi \in [a, b]$.

Therefore,

$$\int_a^b f(t)dt - T = f[a, b, \xi] \int_a^b (t-a)(t-b)dt$$

$$= f[a, b, \xi] \left(-\frac{1}{6}(b-a)^3\right)$$

The result follows from the fact that

$$f[a, b, \xi] = \frac{1}{2} f''(\eta).$$
How to reduce error?

- If \((b-a)\) is large error is higher
 - Use composite rules.
 - As we saw they give lower error

Example: Composite Trapezoidal Rule. Let’s divide \([a, b]\) into \(n\) pieces of equal length \(h = (b - a)/n\).

\[
\int_{a}^{b} f(t) dt \\
\approx \frac{h}{2}(f(a)+f(a+h)) + \frac{h}{2}(f(a+h)+f(a+2h)) + \ldots + \frac{h}{2}(f(a+(n-1)h)+f(a+nh))
\]

\[
= h\left[\frac{1}{2}f(a) + f(a + h) + f(a + 2h) + \ldots + f(a + (n - 1)h) + \frac{1}{2}f(b)\right]
\]

\[\equiv T_n.\]
Error of composite trapezoid

The **Error formula** for the Composite Trapezoidal Rule is

\[
\int_a^b f(t)dt - T_n = -\sum_{i=1}^{n} \frac{h^3}{12} f''(\eta_i)
\]

where \(\eta_i \in [a + (i - 1)h, a + ih] \). Since \(nh = b - a \), and

\[
\frac{1}{n} \sum_{i=1}^{n} f''(\eta_i)
\]

is an average value of \(f'' \) on \([a, b] \), we obtain

\[
\int_a^b f(t)dt - T_n = -\frac{(b-a)h^2}{12} f''(\eta)
\]

for some \(\eta \in [a, b] \).

- Error decreases by a factor of \((b-a)^2\)
Adaptive integration

- Other factor in the error is the second derivative
- Idea, keeping the error fixed, reduce the size of the interval where second derivative is high
- If we used the worst part of the domain to determine step size we would waste resources on the easy parts
- Idea of adaptive use different h for different parts
Adaptive integration

- In general we do not have a graph to tell us where things are bad.
- Need a function which estimates the error locally.
- Idea: use two formulae: one more accurate, and one less accurate in each interval and estimate the error.
- Difference gives an estimate of the error locally.
- Where error is larger we need to do something.
• If local error estimate is less than tolerance in a particular region we can stop dividing it.
• Otherwise split the interval in two pieces, and repeat the procedure
• Each sub-interval tolerance requirement needs to be half that of the parents
• Upon convergence each subinterval achieves success.
 – Some subintervals needed lots of points, others few
• Add up all sub interval answers and report to calling program
Adaptive methods

- Allow us to achieve a given tolerance at a given cost