Least squares method: linear regression

Ramani Duraiswami,
Dept. of Computer Science

Normal equations

$$2(A'Ac - A'y) = 0 \quad \text{or} \quad A'Ac = A'y$$

- The system is called the “Normal equations”
- Can solve least squares problems using these
- For A size $m \times n$ and c of size n and y of size m what are the dimensions of the normal equations?
 - $n \times n$
- Have converted it to a regular system that we know how to solve
- Solve via LU decomposition
- Solution should be accurate if the matrix $A'A$ is well conditioned
More on Normal Equations

• Normal equations are only important theoretically
• Gives us a way to think about least squares.
• In practice least squares solved via a different process
 – QR decomposition
• Why?
 – Somewhat expensive as we have to form $A^t A$
 – involves matrix multiplication and then solution
 – More importantly it is poorly conditioned
 – $\text{cond}(A^t A) = (\text{cond}(A))^2$
• Would like a method whose errors are closer to the
 condition number of A

Look at the fitting matrix in more detail

• Suppose we want to solve via least squares
 \[\mathbf{A} \mathbf{c} = \mathbf{y} \]
 – \mathbf{A} is a $m \times n$ matrix with $m>n$
• One way to solve was via LU decomposition of normal
 equations
 – Poor condition numbers and so not recommended
 – Requires matrix-matrix multiplication which is expensive
• Instead
 – Look for methods that can directly operate on \mathbf{A} to get the
 solution
 – Recall in LU we did a set of transformations to \mathbf{A} and the r.h.s.
 to find \mathbf{e}
 – Today we will look at the QR algorithm
Vector Spaces

- A *linear combination* of vectors results in a new vector:

\[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n \]

- If the only set of scalars such that

\[\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0} \]

is \(\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0 \) then we say the vectors \(\{\mathbf{v}_i\} \) are *linearly independent*

- The *dimension* of a space is the greatest number of linearly independent vectors possible in a vector set

- For a vector space of dimension \(n \), any set of \(n \) linearly independent vectors form a *basis*

Linear Transformations: Matrices

- A *linear transformation*:
 - Maps one vector to another
 - Preserves linear combinations

- Turns out any linear transform can be represented by a *matrix*

- A \(M \times N \) matrix takes a vector with \(N \) elements to a vector with \(M \) elements
Key Ideas

- Column space of a matrix: the vector space formed by the collection of column vectors in a matrix.
- Every matrix vector product results in a vector formed by linear combination of vectors in the column space.
- A \(m \times n \) rectangular matrix \(A \) takes \(n \) vectors into \(m \) vectors.
- Let the least squares problem be \(Ac = f \).
- Let the solution which minimizes the residual be \(c_* \).
- Then \(c_* \) creates on matrix vector product a rhs \(f_* \) that is in the column space of \(A \).
- We want that \(c_* \) minimizes \(r = ||f - f_*|| \).

Null Space of A

- Not all \(m \) vectors will be reachable even if we supply arbitrary \(n \) vectors.
- \(\text{Range of } A \): the part of the space of \(m \) vectors that are reachable.
 \[
 \text{Range}(A) = \{ y \in R^m : y = Ax \text{ for some } x \in R^n \}
 \]
 - The range of \(A \) contains all those vectors that can be made up using the columns of \(A \).
 - \(\text{Rank}(A) \) is the dimension of the range of \(A \).
 - Null space of \(A \): those vectors \(x \), for which \(Ax \) is zero.
 \[
 \text{Null}(A) = \{ x \in R^n : Ax = 0 \}
 \]
 \[
 \text{Dim(Null}(A)) + \text{Rank}(A) = n
 \]
- Key idea: We want to minimize the error in the part that can be reached.
Null Space of A^t

- A^t is a matrix that takes m vectors into n vectors
- Not all n vectors may be reachable even if we supply arbitrary m vectors
 - Range of A^t: the part of the space of n vectors that are reachable
 \[\text{Range}(A^t) = \{ y \in \mathbb{R}^n : y = A^t x \text{ for some } x \in \mathbb{R}^m \} \]
 - The range of A^t contains all those vectors that can be made up using the rows of A
 - Rank(A^t) is the dimension of the range of A^t
 - Null space of A^t: those vectors x, for which $A^t x$ is zero
 \[\text{Null}(A^t) = \{ y \in \mathbb{R}^m : A^t y = 0 \} \]
 \[\text{Dim}(\text{Null}(A^t)) + \text{Rank}(A^t) = m \]

QR decomposition

- Suppose we can write
 \[A = Q' R' \]
 - Q' is an orthonormal matrix of dimension $m \times m$
 - R' is a $m \times n$ matrix that can be written as \[[R] \]
 \[[0] \]
 - R is a triangular $n \times n$ matrix and 0 is a matrix of zeroes of size $m-n \times n$
 - Q' can also be partitioned as $[Q \; Q']$ with Q containing n orthonormal columns of size m and Q'_{m-n} orthonormal columns
- If $Ax = b$ then $(Q' \; R')x = b$ or $Q'(R' x) = b$ or $Q'y = b$
 - So if b is in range(A), it is also in range(Q')
 - Similarly if $Q'y = b$; then $b = Ax$ with $x = R^{-1}y$
 - Columns of Q form an orthonormal basis for range(A)
Orthogonal Matrices

- Orthogonal matrices are square matrices that have their columns orthonormal to each other
 - dot product of different column vectors is zero, while of the same column is one
 - Denoted Q
 - Most trivial orthogonal matrix is the identity matrix
 - $Q^t Q = \Lambda$
 - For an orthonormal matrix
 - $Q^t Q = I$
 - So $Q^{-1} = Q^t$

Generalization: a complex matrix is Hermitian iff $Q^{-1} = Q^H$ where superscript H denotes complex conjugate transpose

Orthogonal matrix facts

- Suppose Q is an orthonormal matrix
- Then for any vector r the Euclidean norm is preserved in an orthonormal transformation
- Proof
 $$\|Qr\|^2 = (Qr)^t (Qr) = r^t Q^t Q r = r^t (Q^t Q) r = r^t r = \|r\|^2$$
- If Q is an orthonormal matrix
 - so is the extended matrix Q_e
 - $Q_e = \begin{bmatrix} I & 0 \\ 0 & Q \end{bmatrix}$
- Easy to show from definition that
 $$Q_e^t Q_e = I$$
Solving least squares with QR

• \(A = Q'R' \)

• Let \(r = y - Ac \) \(b = Q'^t y \)

• Goal of least squares find the \(c \) that minimizes squared error (residue)

• Partition \(b \) in to two pieces
 – \(b_1 \) of dimension \(n \)
 – \(b_2 \) of dimension \(m-n \)
 – \(||r||^2 = ||y - Ac||^2 = ||y - Q' R' c||^2 \)
 – Length is not changed by multiplication with orthogonal matrix
 – So \(||r||^2 = ||Q'^r||^2 = ||Q'^t [y - Q' R' c]||^2 \)
 \(= ||b_1 - R c||^2 + ||b_2 - 0c||^2 \)
So no matter what \(c \) is the second term remains unchanged
If we minimize \(||r||^2 \) the best we can do is minimize first term

Solving LS via QR

• How do we minimize \(||b_1 - R c||^2 \)
 – If \(R \) is full rank set solve \(Rc = b_1 \) then we have done the best we can
 – (if \(R \) is rank deficient solve in least squares sense)
 – Recall \(R \) is triangular so this equation can be easily solved

• Algorithm
 – Compute QR factorization of \(A = Q'R' \)
 – Form \(c_1 = Q^t b \)
 – Solve \(Rx = c_1 \)
 – If \(R \) is full rank and \(Q^{-1} \) is available then the norm of the residual is \(||Q^{-1} b|| \). Else \(r = b - Ax \).