Computational Methods
CMSC/AMSC/MAPL 460

Least squares methods

Ramani Duraiswami,
Dept. of Computer Science
Computing the factorization

- QR is useful … so how do we factorize a matrix A?
- In LU we computed a upper triangular matrix by computing adding multiples of other rows so that elements below a given column were zeroed out
- The multipliers were stored in L which gave us $A=LU$
- Here we want to zero out entries below the diagonal but do it with orthogonal matrices
- Two strategies
 - Zero out a column at a time using a matrix Q_1 so that $Q_1^t A$ gives us all entries below a certain one in a column as zero
 - Householder transformations
 - Result $Q_1^t\ldots Q_2^t Q_1^t A = R$ or $A = Q_1\ldots Q_{n-1} Q_n R = Q R$
 - Zero out one specific entry of a column at a time
 - Givens rotations
- Product of orthogonal matrices is orthogonal
To compute QR

- Perform a sequence of orthogonal transformations that zero out elements
- Orthogonal transformations can be rotations or reflections or combinations
- Givens Rotation:
 - Givens matrix has elements
 - \(c^2 + s^2 = 1 \)
 - How do we use a rotation to zero out an element?
 - Let \(z = [z_1 \ z_2]^t \)
 - We want to eliminate \(z_2 \)
 - Eliminate \(z_2 \)
 \[
 (c^2 + s^2)z_1 = cx, \quad c = z_1/x.
 \]
 - Similarly we get \(s = z_2/x \)
 and \(z_1^2 + z_2^2 = x^2 \)
Givens QR

- To apply idea to larger matrix, embed the Givens matrix in identity matrix. We will use the notation G_{ij} to denote an $n \times n$ identity matrix with its ith and jth rows modified to include the Givens rotation: for example, if $n = 6$, then

$$G_{25} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & c & 0 & 0 & s & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & s & 0 & 0 & -c & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},$$

and multiplication of a vector by this matrix leaves all but rows 2 and 5 of the vector unchanged.

- Algorithm

\[
\text{for } i=1, \ldots, n \\
\quad \text{for } j=i+1, \ldots, m \\
\quad\quad \text{Find Givens matrix } G_{ij}\text{ to zero out } j,i \text{ element of } A \\
\quad\quad \text{using the the value at position } (i,i) \\
\quad\quad A = G_{ij}A \\
\quad \text{end} \\
\text{end}
\]
Goal: reflect axial vector through a (hyper)-plane

- Axial vector is any vector through the origin. Let it be \(\mathbf{u} \)

- Goal reflect it through a plane
- Let \(\mathbf{a} \) be the unit vector normal to the plane
- \(\mathbf{u} \cdot \mathbf{a} = \|\mathbf{u}\| \cos \theta \)
- To get reflected vector in the plane
 Subtract twice the component of \(\mathbf{u} \) along \(\mathbf{a} \)
 \(\mathbf{v} = \mathbf{u} - 2 \|\mathbf{u}\| \mathbf{a} \|\mathbf{u}\| \cos \theta \)
 \(\cos \theta = \frac{(\mathbf{a} \cdot \mathbf{u})}{\|\mathbf{u}\|} \)
Householder transform

• Achieve this reflection via multiplication by an orthogonal matrix

\[v = Qu = u - 2 \frac{a \|u\|}{a \cdot u} \cos \theta \]

\[= u - 2 \frac{a \|u\| (a \cdot u)}{(\|u\|^2)} \]

\[= (I - 2 \frac{aa^t}{a^t a})u \]

• What if \(a \) is not a unit vector?

\((I - 2 \frac{(aa^t)}{(a^t a)})u \)

• \(Q = I - 2 \frac{aa^t}{(a^t a)} \)
Householder Transformations

The *Householder transformation* determined by vector \(v \) is:

\[
H = I - 2 \frac{vv^T}{v^Tv} \quad \text{outer product, n×n matrix}
\]

\[
Hx = x - 2 \frac{v(v^Tx)}{v^Tv} \quad \text{inner product, scalar}
\]

To apply it to a vector \(x \), compute:

\[
Hx = \left(I - 2 \frac{vv^T}{v^Tv} \right) x = x - 2 \frac{v(v^Tx)}{v^Tv}
\]

\[
Hx = x - \left(2 \frac{v^Tx}{v^Tv} \right) v \quad \text{scalar}
\]
Householder Geometry

- Hx is x reflected through the hyperplane perpendicular to v ($p : p^Tv=0$)
Householder Properties

• H is symmetric, since

$$H^T = \left(I - 2 \frac{vv^T}{v^Tv} \right)^T = I^T - 2 \frac{(vv^T)^T}{v^Tv} = I - 2 \frac{v^Tv}{v^Tv} = H$$

• H is orthogonal, since

$$H^T H = HH = \left(I - 2 \frac{vv^T}{v^Tv} \right) \left(I - 2 \frac{vv^T}{v^Tv} \right)$$

$$= I - 4 \frac{vv^T}{v^Tv} + 4 \frac{v(v^Tv)v^T}{(v^Tv)^2} = I - 4 \frac{vv^T}{v^Tv} + 4 \frac{vv^T}{v^Tv} = I$$

and $H^T H = I$ implies $H^T = H^{-1}$
Householder to Zero Matrix Elements

We’ll use Householder transformations to zero subdiagonal elements of a matrix.

Given any vector a, find the v that determines an H such that,

$$Ha = \alpha e_1 = \alpha [1, 0, 0, ..., 0]^T$$

Now solve for v:

$$Ha = a - \left(2 \frac{v^T a}{v^T v}\right)v = a - \mu v = \alpha e_1$$

where μ is parenthesized scalar, related to length of v

$$\Rightarrow v = (a - \alpha e_1) / \mu$$

We're free to choose $\mu = 1$, since $\|v\|$ does not affect H
Choosing the Vector ν

So $\nu = a - \alpha e_1$ for some scalar α.

But $\|Ha\|_2 = \|a\|_2$

(prove this by expanding $\|Ha\|_2^2 = (Ha)^T Ha$)

and $\|Ha\|_2 = |\alpha|$ by design, so $\alpha = \pm \|a\|_2$

(either sign will work).

To avoid $\nu \approx 0$ we choose $\alpha = -\text{sign}(a_1)\|a\|_2$,

so $\nu = a + \text{sign}(a_1)\|a\|_2 e_1$ is our answer.
Applying Householder Transforms

• Don’t compute Hx explicitly, that costs $3n^2$ flops.
• Instead use the formula given previously,

$$Hx = x - \left(2 \frac{v^Tx}{v^Tv}\right)v$$

which costs $4n$ flops (if you pre-compute v^Tv or pre-normalize $v^Tv=2$).

• Typically, when using Householder transformations, you never compute the matrix H; it’s only used in derivation and analysis.
QR Decomposition

- Householder transformations are a good way to zero out subdiagonal elements of a matrix.
- A is decomposed:
 \[
 Q^T A = \begin{bmatrix} R \\ 0 \end{bmatrix} \quad \text{or} \quad Q Q^T A = A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}
 \]

- where $Q^T H_n \ldots H_2 H_1$ is the orthogonal product of Householders and R is upper triangular.
- Overdetermined system $Ax=b$ is transformed into the easy-to-solve
 \[
 \begin{bmatrix} R \\ 0 \end{bmatrix} x = Q^T b
 \]
Other Norms

• Here we fit using the “least-squares” or L_2 norm
• Could minimize the residual in other norms
• For example we may have more confidence in some data, and want to be sure that their residual is lower
 – Attach a weight to each residual
 \[\| r \|_w^2 = \sum_{i=1}^{m} w_i r_i^2 \]
• Or we may like the 1-norm or infinity norm better

\[
\| r \|_1 = \sum_{i=1}^{m} |r_i| \quad \| r \|_{\infty} = \max_{i} |r_i|
\]
SVD and Pseudo-Inverse

- $Ax=b \quad A$ is $m \times n$, x is $n \times l$ and b is $m \times l$.
- $A=USV^t$ where U is $m \times m$, S is $m \times n$ and V is $n \times n$
- $USV^t x = b$. So $SV^t x = U^t b$
- If A has rank r, then r singular values are significant

$$V^t x = \text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0) U^t b$$
$$x = V \text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0) U^t b$$

$$x_r = \sum_{i=1}^{r} \frac{u_i^t b}{\sigma_i} v_i \quad \sigma_r > \varepsilon, \quad \sigma_{r+1} \leq \varepsilon$$

- Pseudoinverse $A^+=V \text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0) U^t$
 - A^+ is a $n \times m$ matrix.
 - If rank $(A) = n$ then $A^+ = (A^t A)^{-1} A$
 - If A is square $A^+ = A^{-1}$