• Example

\[X = \begin{pmatrix} 1 & 1 \\ \delta & 0 \\ 0 & \delta \end{pmatrix} \]

\[X^T X = \begin{pmatrix} 1 + \delta^2 & 1 \\ 1 & 1 + \delta^2 \end{pmatrix} \]
Look at the fitting matrix in more detail

• Suppose we want to solve via least squares
 \[\mathbf{A}c = y \]
 – \(\mathbf{A} \) is a \(m \times n \) matrix with \(m > n \)

• One way to solve was via LU decomposition of normal equations
 – Poor condition numbers and so not recommended
 – Requires matrix-matrix multiplication which is expensive

• Instead
 – Look for methods that can directly operate on \(\mathbf{A} \) to get the solution
 – Recall in LU we did a set of transformations to \(\mathbf{A} \) and the r.h.s. to find \(\mathbf{c} \)
 – Today we will look at the QR decomposition
Null Space of A

• Look at structure of rectangular systems
• Here A is a matrix that takes n vectors into m vectors with $n < m$
• Not all m vectors will be reachable even if we supply arbitrary n vectors because A is a linear transform
 – $Range$ of A: the part of the space of m vectors that are reachable
 $$Range(A) = \{ y \in R^m : y = Ax \text{ for some } x \in R^n \}$$
 – The range of A contains all those vectors that can be made up using the columns of A
 – $Rank(A)$ is the dimension of the range of A
 – Null space of A: those vectors x, for which Ax is zero
 $$Null(A) = \{ x \in R^n : Ax = 0 \}$$

$$\text{Dim}(Null(A)) + \text{Rank}(A) = n$$
Null Space of A^t

- A^t is a matrix that takes m vectors into n vectors
- Not all n vectors may be reachable even if we supply arbitrary m vectors
 - $Range$ of A^t: the part of the space of n vectors that are reachable
 \[\text{Range}(A^t) = \{ y \in \mathbb{R}^n : y = A^t x \text{ for some } x \in \mathbb{R}^m \} \]
 - The range of A^t contains all those vectors that can be made up using the rows of A
 - $Rank(A^t)$ is the dimension of the range of A^t
 - Null space of A^t: those vectors x, for which $A^t x$ is zero
 \[\text{Null}(A^t) = \{ x \in \mathbb{R}^m : A x = 0 \} \]

\[\text{Dim(Null}(A^t)) + \text{Rank}(A^t) = m \]
Orthogonal Matrices

- Orthogonal matrices are square matrices that have their columns orthonormal to each other
 - dot product of different column vectors is zero, while of the same column is one
 - Denoted \(Q \)
 - Most trivial orthogonal matrix is the identity matrix
 - \(Q^tQ=I \)

So \(Q^{-1}=Q^T \)

generalization: a complex matrix is *Hermitian* iff \(Q^{-1}=Q^H \)
where superscript \(^H\) denotes complex conjugate transpose
QR decomposition

• Suppose we can write

\[A = Q'R' \]

- \(Q' \) is an orthonormal matrix of dimension \(m \times m \)
- \(R' \) is a \(m \times n \) matrix that can be written as

\[
\begin{bmatrix}
R \\
0
\end{bmatrix}
\]

\(R \) is a triangular \(n \times n \) matrix and \(0 \) is a matrix of zeroes of size \(m-n \times n \)

\(Q' \) can also be partitioned as \([Q \ Q^\sim] \) with \(Q \) containing \(n \) orthonormal columns of size \(m \) and \(Q^\sim \) \(m-n \) orthonormal columns

• If \(Ax = b \) then \((Q' \ R')x = b \) or \(Q'(R'x) = b \) or \(Q'y = b \)
 - So if \(b \) is in range(\(A \)), it is also in range(\(Q' \))
 - Similarly if \(Q'y = b \); then \(b = Ax \) with \(x = R^{-1}y \)
 - Columns of \(Q \) form an orthonormal basis for range(\(A \))
Orthogonal matrix facts

• Suppose Q is an orthonormal matrix
• Then for any vector r the Euclidean norm is preserved in an orthonormal transformation

Proof

\[\|Qr\|^2 = (Qr)^t (Qr) = r^t Q^t Q r = r^t (Q^t Q) r = r^t r = \|r\|^2 \]

• If Q is an orthonormal matrix so is the extended matrix Q_e

\[Q_e = \begin{bmatrix} I & 0 \\ 0 & Q \end{bmatrix} \]

• Easy to show from definition that

\[Q_e^t Q_e = I \]
Q^\sim forms Nullspace of (A^t)

- Choose z in nullspace of A^t
- Let $A^t z = 0$
 - $(Q'R')^t z = R^t Q^t z = 0$
 - So $R^t y = 0$ for $y = Q^t z$
 - If R is full rank this means y has to be the zero vector
 - So $Q^t z = 0$
 - So z must be composed of the elements from Q^\sim
 - So the columns of Q^\sim form an orthonormal basis for $\text{nullspace}(A^t)$
Solving least squares with QR

- \(A = Q'R' \)
- Let \(r = b - Ax \) \(c = Q'^t b \)
- Goal of least squares find the \(x \) that minimizes squared error (residue)
- Partition \(c \) in to two pieces
 - \(c_1 \) of dimension \(n \)
 - \(c_2 \) of dimension \(m-n \)
- \(\|r\|^2 = \|b - Ax\|^2 = \|b - Q'R'x\|^2 \)
- Length is not changed by multiplication with orthogonal matrix
- So \(\|r\|^2 = \|Q'^t r\|^2 = \|Q'^t [b - Q'R'x]\|^2 \)
 - \(= \|c_1 - Rx\|^2 + \|c_2 - 0x\|^2 \)
- So no matter what \(x \) is the second term remains unchanged
- If we minimize \(\|r\|^2 \) the best we can do is minimize first term
Solving LS via QR

• How do we minimize $\|c_1 - Rx\|^2$
 – If R is full rank set solve $Rx = c$ then we have done the best we can
 – (if R is rank deficient solve in least squares sense)
 – Recall R is triangular so this equation can be easily solved

• Algorithm
 – Compute QR factorization of $A = Q'R'$
 – Form $c_1 = Q^t b$
 – Solve $Rx = c_1$
 – If R is full rank and Q^t is available then the norm of the residual is $\|Q^t b\|$. Else $r = b - Ax$.