Piecewise Cubic interpolation

- While we expect function not to vary, we expect it to also be smooth
- So we could consider piecewise interpolants of higher degree
- How many pieces of information do we need to fit a cubic between two points?
 - \(y = a + bx + cx^2 + dx^3 \)
 - 4 coefficients
 - Need 4 pieces of information
 - 2 values at end points
 - Need 2 more pieces of information
 - Derivatives?

Cubic interpolation

- ordinary cubic polynomials: 3 continuous nonzero derivatives.
- **cubic splines:** 2 continuous nonzero derivatives.
- **Hermite cubics:** 1 continuous nonzero derivative.

- However for Hermite, the derivative needs to be specified
- Cubic splines, the derivative is not specified but enforced
Cubic splines

Notation:

- \(h_{i+1} = x_{i+1} - x_i, \ i = 1, \ldots, n - 1 \)
- \(k_{i+1} = f_{i+1} - f_i, \ i = 1, \ldots, n - 1 \)
- \(I_{i+1} = [x_i, x_{i+1}], \ i = 1, \ldots, n - 1 \)

We will set \(s(x) \) equal to \(s_{i+1}(x) \) on interval \(I_{i+1} \), where

\[
s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i
\]

Imposing the continuity conditions

\[
s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i
\]

1. For \(i = 1, \ldots, n - 1 \),

\[
s_{i+1}(x_i) = f_i = m_i \frac{h_{i+1}^3}{6h_{i+1}} + m_{i+1}0 + a_i0 + b_i.
\]

Therefore,

\[
b_i = f_i - m_i \frac{h_{i+1}^2}{6}.
\]

\[
s_{i+1}(x) = m_i \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i(x - x_i) + b_i
\]
Using function continuity

2. For $i = 1, \ldots, n - 1$,

$$s_{i+1}(x_{i+1}) = f_{i+1} = m_{i+1} + m_{i+1} \frac{h_{i+1}^3}{6h_{i+1}} + a_i h_{i+1} + b_i.$$

Therefore,

$$a_i = \frac{f_{i+1} - b_i - m_{i+1} \frac{h_{i+1}^2}{6}}{h_{i+1}},$$

so

$$a_i = \frac{f_{i+1} - f_i}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i)$$

So we have formulas for all of the as and bs in terms of the ms, and we have ensured that s is continuous.

First Derivative continuity

$$s_{i+1}'(x) = m_{i+1} \frac{(x_{i+1} - x)^3}{6h_{i+1}} + m_{i+1} \frac{(x - x_i)^3}{6h_{i+1}} + a_i (x - x_i) + b_i$$

3. For $i = 1, \ldots, n - 1$,

$$s_{i+1}'(x) = -\frac{m_i}{2h_{i+1}} (x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}} (x - x_i)^2 + a_i.$$

Therefore, $s_{i+1}'(x_i) = s_i'(x_i)$ if

$$-\frac{m_i}{2h_{i+1}} h_{i+1}^2 + a_i = \frac{m_i}{2h_{i+1}} h_i^2 + a_{i-1}, i = 2, \ldots, n - 1.$$

Since $a_i = \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6} (m_{i+1} - m_i)$, we have

$$-\frac{m_i}{2} h_{i+1} + \frac{k_{i+1}}{h_{i+1}} h_{i+1} - \frac{h_{i+1}}{6} (m_{i+1} - m_i) = \frac{m_i}{2} h_i + \frac{k_i}{h_i} h_i - \frac{h_i}{6} (m_i - m_{i-1}).$$
Second derivative continuity

\[s'_{i+1}(x) = \frac{-m_i}{2h_{i+1}}(x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_{i+1}}(x - x_i)^2 + a_i. \]

4. For \(i = 1, \ldots, n - 1, \)

\[s''_{i+1}(x) = \frac{m_i}{h_{i+1}}(x_{i+1} - x) + \frac{m_{i+1}}{h_{i+1}}(x - x_i). \]

Therefore, \(s''_{i+1}(x_i) = m_i = s''_{i}(x_i) \) for \(i = 2, \ldots, n - 1, \) so continuity of this derivative is built into the representation!

Note that

\[s''(x_1) = s_1(x_1) = m_1 \]
\[s''(x_n) = s_n(x_n) = m_n. \]

Solving for m

Our function \(s \) is an interpolating cubic spline if, for \(i = 2, \ldots, n - 1, \)

\[\frac{-m_i}{2}h_{i+1} + \frac{k_{i+1}}{h_{i+1}} - \frac{h_{i+1}}{6}(m_{i+1} - m_i) = \frac{m_i}{2}h_i + \frac{k_i}{h_i} - \frac{h_i}{6}(m_i - m_{i-1}). \]

and thus the parameters \(m_i, \) which are second derivatives at the knots, can be determined from the linear equations

\[\frac{h_i}{6}m_{i-1} + \frac{h_{i+1} + h_i}{3}m_i + \frac{h_{i+1}}{6}m_{i+1} = -\frac{k_i}{h_i} + \frac{k_{i+1}}{h_{i+1}} \equiv -\gamma_i + \gamma_{i+1}. \]

If we set \(c_i = h_i/6, \) then we can write the system as

\[
\begin{bmatrix}
 c_2 & 2(c_2 + c_3) & c_3 \\
 c_3 & 2(c_3 + c_4) & c_4 \\
 \vdots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots \\
 c_{n-1} & \cdots & 2(c_{n-1} + c_n) & c_n
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 \vdots \\
 \vdots \\
 m_n
\end{bmatrix} =
\begin{bmatrix}
 -\gamma_2 + \gamma_3 \\
 \vdots \\
 \vdots \\
 -\gamma_{n-1} + \gamma_n
\end{bmatrix}
\]

- n-2 equations in n unknowns
• Need to add two conditions
• Usually at end points

Common choices of end conditions

• The **natural** cubic spline interpolant: $s''(a) = s''(b) = 0$
• The **periodic** cubic spline interpolant: $s^{(k)}(a) = s^{(k)}(b)$, $k = 0, 1, 2$.
• The **complete** cubic spline interpolant: $s'(a)$ and $s'(b)$ given.
• The **not-a-knot** cubic spline interpolant: make the third derivative of s continuous at x_2 and x_{n-1} so that these points are not knots.

Solving a cubic spline system

• Assume natural splines

\[
\begin{bmatrix}
2(c_2 + c_3) & c_3 & & & \\
c_3 & 2(c_3 + c_4) & c_4 & & \\
& & & \ddots & \ddots \\
& & c_{n-1} & 2(c_{n-1} + c_n) \\
& & & & c_n
\end{bmatrix}
\begin{bmatrix}
m_2 \\
m_3 \\
\vdots \\
m_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
-\gamma_2 + \gamma_3 \\
-\gamma_3 + \gamma_4 \\
\vdots \\
-\gamma_{n-1} + \gamma_n
\end{bmatrix}
\]

• This is a tridiagonal system
• Can be solved in $O(n)$ operations
• How?
 – Do LU and solve
 – With tridiagonal structure requires $O(7n)$ operations
Efficient polynomial evaluation

• Given a polynomial in power form how many operations does it take to evaluate it?
 \[a_p x^p + \cdots + a_1 x + a_0 \]

Horner’s Rule

• Horner’s rule (Horner, 1819) *recursively* evaluates the polynomial \(a_p x^p + \cdots + a_1 x + a_0 \) as:
 \[
 ((\cdots(a_p x + a_{p-1})x+\cdots)x + a_0.
 \]
• costs \(p \) multiplications and \(p \) additions, no extra storage.
 Reduces complexity from \(O(p^2) \) to \(O(p) \)

Interpolation: wrap up

• Interpolation: Given a function at \(N \) points, find its value at other point(s)
• Polynomial interpolation
 – Monomial, Newton and Lagrange forms
• Piecewise polynomial interpolation
 – Linear, Hermite cubic and Cubic Splines
• Polynomial interpolation is good at low orders
• However, higher order polynomials “overfit” the data and do not predict the curve well in between interpolation points
• Cubic Splines are quite good in smoothly interpolating data