Computational Methods
CMSC/AMSC/MAPL 460

Least squares method: linear regression

Ramani Duraiswami,
Dept. of Computer Science
Look at the fitting matrix in more detail

• Suppose we want to solve via least squares
 \[Ax = b \]
 – A is a \(m \times n \) matrix with \(m > n \)

• One way to solve was via LU decomposition of normal equations
 – Poor condition numbers and so not recommended
 – Requires matrix-matrix multiplication which is expensive

• Today’s class
 – Look for methods that can directly operate on A to get the solution
 – Recall in LU we did a set of transformations to A and the r.h.s. to find x
 – Today we will look at the QR algorithm
Null Space

• Today: Other matrix decompositions that are more stable and less expensive

• Here A is a matrix that takes \(n \) vectors into \(m \) vectors with \(n < m \)

• Not all \(m \) vectors will be reachable even if we supply arbitrary \(n \) vectors because A is a linear transform

 – *Range* of A: the part of the space of \(m \) vectors that are reachable

 \[
 \text{Range}(A) = \{ y \in \mathbb{R}^m : y = Ax \text{ for some } x \in \mathbb{R}^n \} \]

 – The range of A contains all those vectors that can be made up using the columns of A

 – *Rank* \((A) \) is the dimension of the range of A

 – Null space of A: those vectors \(x \), for which \(Ax \) is zero

 \[
 \text{Null}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \} \]

\[
\text{Dim(Null}(A)) + \text{Rank}(A) = n
\]
Orthogonal Matrices

- Orthogonal matrices are square matrices that have their columns orthonormal to each other
 - dot product of different column vectors is zero, while of the same column is one
 - Denoted Q
 - Most trivial orthogonal matrix is the identity matrix
 - $Q^t Q = I$

So $Q^{-1} = Q^T$

Generalization: a complex matrix is *Hermitian* iff $Q^{-1} = Q^H$
where superscript H denotes complex conjugate transpose
QR decomposition

- Suppose we can write
 \[A = Q'R' \]
 - \(Q' \) is an orthogonal matrix of dimension \(m \times m \)
 - \(R' \) is a \(m \times n \) matrix that can be written as
 \[
 \begin{bmatrix}
 R \\
 0
 \end{bmatrix}
 \]
 \(R \) is a triangular \(n \times n \) matrix and \(0 \) is a matrix of zeroes of size \(m-n \times n \)

 \(Q' \) can also be partitioned as
 \[
 [Q \ Q^\sim]
 \]
 with \(Q \) containing \(n \) orthogonal columns and \(Q^\sim \) \(m-n \) orthogonal columns

- If \(Ax = b \) then \((Q' \ R')x = b \) or \(Q'(R'x) = b \) or \(Q'y = b \)
 - So if \(b \) is in \(\text{range}(A) \), it is also in \(\text{range}(Q') \)
 - Similarly if \(Q'y = b \); then \(b = Ax \) with \(x = R^{-1}y \)
 - Columns of \(Q \) form an orthonormal basis for \(\text{range}(A) \)
Orthogonal matrix facts

• Suppose Q is an orthogonal matrix
• Then for any vector r the Euclidean norm is preserved in an orthogonal transformation
• Proof
\[\|Qr\|^2 = (Qr)^t (Qr) = r^t Q^t Q r = r^t (Q^t Q) r = r^t r = \|r\|^2 \]
• If Q is an orthogonal matrix so is the extended matrix \(Q_e \)
• Easy to show from definition that
\[Q_e^t Q_e = I \]
Q~ forms Nullspace of (A^t)

• Choose z in nullspace of A^t
• Let A^t z = 0
 – (Q’R’)^t z = R’^t Q’^t z = 0
 – So R^t y = 0 for y = Q^t z
 – If R is full rank this means y has to be the zero vector
 – So Q^t z = 0
 – So z must be composed of the elements from Q~
 – So the columns of Q~ form an orthonormal basis for nullspace(A^t)
Solving least squares with QR

- \(A = Q'R' \)
- Let \(r = b - Ax \) \(c = Q'^t b \)
- Goal of least squares find the \(x \) that minimizes squared error (residue)
- Partition \(c \) in to two pieces
 - \(c_1 \) of dimension \(n \)
 - \(c_2 \) of dimension \(m-n \)
- \(||r||^2 = ||b - Ax||^2 = ||b - Q' R' x||^2 \)
- Length is not changed by multiplication with orthogonal matrix
- So \(||r||^2 = ||Q'^t r||^2 = ||Q'^t [b - Q' R' x]||^2 = ||c_1 - R x||^2 + ||c_2 - 0x||^2 \)

So no matter what \(x \) is the second term remains unchanged
If we minimize \(||r||^2 \) the best we can do is minimize first term
Solving LS via QR

• How do we minimize $\|c_1 - Rx\|^2$
 – If R is full rank set solve $Rx = c$ then we have done the best we can
 – (if R is rank deficient solve in least squares sense)
 – Recall R is triangular so this equation can be easily solved

• Algorithm
 – Compute QR factorization of A
 – Form $c_1 = Q^t b$
 – Solve $Rx = c_1$
 – If R is full rank and Q^\sim is available then the norm of the residual is $\|Q^\sim^t b\|$. Else $r = b - Ax$.
Computing the factorization

- QR is useful … so how do we factorize a matrix A?
- In LU we computed a upper triangular matrix by computing adding multiples of other rows so that elements below a given column were zeroed out
- The multipliers were stored in L which gave us A=LU
- Here we want to zero out entries below the diagonal but do it with orthogonal matrices
- Two strategies
- Zero out a column at a time using a matrix Q_1 so that $Q_1^t A$ gives us all entries below a certain one in a column as zero
 - Householder transformations
 - Result $Q_n^t \ldots Q_2^t Q_1^t A = R$ or $A = Q_1 \ldots Q_{n-1} Q_n R = Q R$
- Zero out one specific entry of a column at a time
 - Givens rotations
- Product of orthogonal matrices is orthogonal
To compute QR

- Perform a sequence of orthogonal transformations that zero out elements
- Orthogonal transformations can be rotations or reflections or combinations
- Givens Rotation:
- Givens matrix has elements
- \(c^2 + s^2 = 1 \)
- How do we use a rotation to zero out an element?
- Let \(z = [z_1 \ z_2]^t \)
- We want \(Gz = \begin{bmatrix} cz_1 + sz_2 \\ sz_1 - cz_2 \end{bmatrix} = xe_1 \)
- Eliminate \(z_2 \)
- \((c^2 + s^2)z_1 = cx \), \(c = z_1/x \).
- Similarly we get \(s = z_2/x \), and \(z_1^2 + z_2^2 = x^2 \)
Givens QR

• To apply idea to larger matrix, embed the Givens matrix in identity matrix. We will use the notation G_{ij} to denote an $n \times n$ identity matrix with its ith and jth rows modified to include the Givens rotation: for example, if $n = 6$, then

$$G_{25} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & c & 0 & 0 & s & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & s & 0 & 0 & -c & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},$$

and multiplication of a vector by this matrix leaves all but rows 2 and 5 of the vector unchanged.

• Algorithm

 for $i=1, \ldots, n$

 for $j=i+1, \ldots, m$

 Find Givens matrix G_{ij} to zero out j,i element of A using the value at position (i,i)

 $A = G_{ij}A$

 end

end