Computational Methods
CMSC/AMSC/MAPL 460

Solving nonlinear equations and zero finding

Ramani Duraiswami,
Dept. of Computer Science
Comparing convergence

• Suppose cost of function evaluations for derivative and function are similar
• Then let Newton method converge in \(n \) steps to error \(\tau \)
• So \(e_0^{2n} \leq \tau \)
 – Take logs: \(2n \log e_0 \leq \log \tau \)
 – So \(2n \geq |\log \tau| / |\log e_0| \quad n \geq (2)^{-1} (|\log \tau| / |\log e_0|) \)
• Secant will require \(s \) steps to ensure \(e_0^{1.62s} \leq \tau \)
 – For secant: \(s \geq (1.62)^{-1} (|\log \tau| / |\log e_0|) \)
• Cost of Newton is \(2n \) while that of secant is \(s \)
• Which is larger?
• \(\text{Cost}_{\text{Newton}} / \text{Cost}_{\text{Secant}} = 2n/s = 1.62 > 1 \)
 – So Secant is cheaper!
Infinite cycles

- Newton's method could iterate forever!

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

- cycles back and forth around a point \(a \) if

\[x_{n+1} - a = -(x_n - a) \]

- This happens if

\[x - a - \frac{f(x)}{f'(x)} = -(x - a) \]

 - Rewrite as an ODE for \(f \)

\[\frac{f'(x)}{f(x)} = \frac{1}{2(x - a)} \]

 - Solution

\[f(x) = \text{sign}(x - a) \sqrt{|x - a|} \]

 - Such cycles could exist with secant methods as well.
Inverse Quadratic Interpolation

- Secant method fits a straight line to predict zero from two previous values.
- We could instead fit a parabola to predict the zero from three values!
- However parabola may not intersect x axis (straight line will always)
 - In this case roots will be complex
- Idea of inverse quadratic interpolation
 - Fit a parabola $x=f(y^2)$ instead of a parabola $y=f(x^2)$
 - Evaluate it at 0
- Problem: polynomial interpolation needs the points (here function values) to be distinct
- Cannot guarantee this!
- So method may not converge
- However near solution it converges very rapidly

```
k = 0;
fa=f(a)
fb=f(b)
fc=f(c)
while abs(c-b) > eps*abs(c)
  x = polyinterp([fa,fb,fc],[a,b,c],0)
a = b;fa=fb;
b = c;fb=fc;
c = x;fc=f(x);
k = k + 1;
end
```
Guaranteed methods: Zeroin

• Start with a and b so that $f(a)$ and $f(b)$ have opposite signs.
• Use a secant step to give c between a and b.
• Repeat until $|b - a| < \varepsilon |b|$ or $f(b) = 0$.
 – Arrange a, b, and c so that
 • $f(a)$ and $f(b)$ have opposite signs.
 • $|f(b)| < |f(a)|$
 • c is the previous value of b.
• If $c \neq a$, consider an IQI step.
• If $c = a$, consider a secant step.
• If the IQI or secant step is in the interval $[a,b]$, take it.
• If the step is not in the interval, use bisection.
Optimization analog of bisection

- Optimization involves finding maximum and minimum of functions.
- At these points first derivative vanishes.
- So optimization typically involves use of differential methods.
- Here we consider an algorithm like bisection.
- Suppose we are given an interval \([a, b]\) and have to find the minimum in this interval.
- We could look at \(f(a), f(b)\) and \(f((a+b)/2)\).
- Even if \(f((a+b)/2) < f(a)\) and \(f((a+b)/2) < f(b)\) don't know if \([a, (a+b)/2]\) or \([(a+b)/2, b]\) contains the minimum.
- Could divide domain into three regions:
 - \(f(a), f(b), f((a+b)/3),\) and \(f(2(a+b)/3)\).
 - Then we know which interval \([a, 2(a+b)/3]\) or \([(a+b)/3, b]\) contains the minimum.
Golden Search

- Let $[0,2/3]$ be the reduced domain
- At next step we cannot reuse our function evaluation at $1/3$ (which is the mid-point of our interval)
- Instead we must evaluate the function at $2/9$ and $4/9$.
- Thus each iteration requires two function evaluations.
- Can we instead choose points (not at $1/3$ and $2/3$) but at some other points ρ and $1-\rho$, so that the point can be reused in the next step
 - So $\rho/(1-\rho) = (1-\rho)/1$
 - $1-2\rho + \rho^2 = \rho$
 - $\rho^2 - 3\rho + 1 = 0$
 - $\rho = (3 \pm (9-4)^{1/2})/2$
 - $\rho = 1+(1-5^{1/2})/2 = 2-\phi = 0.382..$
 - Length of interval is reduced by a factor of $\phi - 1 \approx 0.618$ each step
 - So to converge to machine epsilon we require $52/0.618 \approx 75$ steps
Improved Golden Search: fminbd

- As the search proceeds, we will have three points in the interval with the minimum
- Fit a parabola and find the minimum
- If the minimum is within the interval, we can choose it as the next point
- To stop: recall near a minimum derivative vanishes
- So \(f(x) = f(x_*) + b(x-x_*)^2 \)
- Let \(x-x_* = \delta \) and \(f(x_*) = a \)
- \(f(x) = a + b \delta^2 \)
- If the interval \(\delta \) is as small as machine \(\epsilon \), then the change in the value of \(f \) will be of the order of machine \(\epsilon^2 \).
- SO it is not computable
- Rather change can at most be about the square root of machine \(\epsilon \)
- This is employed in Matlab function fminbd and in the book software function fmintx
Systems of Nonlinear equations

- Analog for 1d bisection: Too hard to find bracketed zero
- Analog for Newton is what is used
- Derivative is now ∇f

Example: Let the function $f(x)$ be defined by

\[
\begin{align*}
 f_1(x_1, x_2) &= x_1^3 + \cos(x_2) \\
 f_2(x_1, x_2) &= x_1 x_2^2 - x_2^3.
\end{align*}
\]

Then in solving $f(x) = 0$, we look for a point x_1, x_2 where both f_1 and f_2 are zero.

The derivative of the function is called the **Jacobian matrix**. It is a matrix $J(x)$ defined by

\[
J(x) = \begin{bmatrix}
 \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\
 \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2}
\end{bmatrix} = \begin{bmatrix}
 3x_1^2 & -\sin(x_2) \\
 x_2^2 & 2x_1 x_2 - 3x_2^2
\end{bmatrix}
\]
Multidimensional Newton’s Method

- \(f_1(x) = f_1(x_1, x_2, ..., x_N) \)
- \(f_2(x) = f_2(x_1, x_2, ..., x_N) \)
- ...
- \(f_M(x) = f_M(x_1, x_2, ..., x_N) \)

- \(f_1(x + h) = f_1(x_1, x_2, ..., x_N) + \nabla f_1 \cdot h \)
- ...
- \(f_M(x + h) = f_1(x_1, x_2, ..., x_N) + \nabla f_M \cdot h \)

\[
\nabla f_1 = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N}
\end{bmatrix}
\]

- \(\nabla f_M = \begin{bmatrix}
\frac{\partial f_M}{\partial x_1} & \frac{\partial f_M}{\partial x_2} & \cdots & \frac{\partial f_M}{\partial x_N}
\end{bmatrix}
\)

- \(f(x + h) = f(x) + Jh = 0 \)
- Solve \(Jh = -f \) to find the step
- \(x_{k+1} = x_k + h \)