Newton Interpolation

- Consider our data set of n+1 points $y_i = f(x_i)$ at x_0, x_1, \ldots, x_n.
- Since $p_n(x)$ is the unique polynomial $p_n(x)$ of order n, write it:

 \[p_n(x) = b_0 + b_1(x-x_0) + b_2(x-x_0)(x-x_1) + \cdots + b_n(x-x_0)(x-x_1)\cdots(x-x_{n-1}) \]

 \[b_0 = f(x_0) \]
 \[b_1 = f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \]
 \[b_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0} \]
 \[\vdots \]
 \[b_n = f[x_n, \ldots, x_0] = \frac{f[x_n, \ldots, x_1] - f[x_{n-1}, \ldots, x_0]}{x_n - x_0} \]

- $f[x_p, x_q]$ is a first divided difference
- $f[x_p, x_q, x_0]$ is a second divided difference, etc.
- Efficient way of adding points to the interpolation!
- Used to fit data to a table
Error

- Define the error term as:

\[\varepsilon_n(x) = f(x) - p_n(x) \]

- If \(f(x) \) is an \(n \)th order polynomial \(p_n(x) \) is of course exact.
- Otherwise, since there is a perfect match at \(x_0, x_1, \ldots, x_n \)
- This function has at least \(n+1 \) roots at the interpolation points.

\[\therefore \varepsilon_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n)h(x) \]

Interpolation Errors

- Suppose we want to measure error at a point \(x \)
- To make polynomial go through \(x \), add to existing polynomial divided difference term.
- This is the error we make using existing polynomial

\[x \notin \{x_0, x_1, \ldots, x_n\} \]

\[\varepsilon_n(x) = f(x) - p_n(x) = f[x_0, x_1, \ldots, x_n, x] \prod_{i=0}^{n} (x - x_i) \]

- Comparing with Taylor series

\[f[x_0, x_1, \ldots, x_n] = \frac{1}{n!} f^{(n)}(\xi) \]
Interpolation Errors

\[\varepsilon_n(x) = f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i) \]
\(x \in [a, b], \xi \in (a, b) \)

- Looks a bit like Taylor series remainder
- Recall, first \(n+1 \) terms of the Taylor Series is also an \(n^{th} \) degree polynomial.

Interpolation: the story so far

- Given a function at \(N \) points, find its value at other point(s)
- So far: polynomial interpolation
 - Polynomials are guaranteed to approximate any given function in an interval as accurately as we want
- Different polynomial bases
 - Monomial or Power basis
 - Newton and Lagrange basis
- For a given set of points and function values
 - interpolating polynomial is unique
- Interpolation problem requires solution of a linear system
 - System is dense for Monomial/Power basis
 - Newton and Lagrange forms allow the direct solution of the polynomial interpolation form
 - Newton form particularly convenient to add new values
- Error for interpolation with \(n \) points is related to the value of the \((n+1)^{th} \) derivative of the underlying function
Polyinterp

• Lagrange interpolation code
 – x,y are points and function values
 – u are points where value is needed

 function v = polyinterp(x,y,u)
 n = length(x);
 v = zeros(size(u));
 for k = 1:n
 %Lagrange function k at u
 w = ones(size(u));
 for j = [1:k-1 k+1:n]
 w = (u-x(j))./(x(k)-x(j)).*w;
 end
 v = v + w*y(k);
 end

• Cost: 2 nested loops, so the cost is \(n^2 \).
 • \(k = 5, \ n = 9 \)
 • \(j = [1:k-1 \ k+1:n] \)
 • \(j = 1 \ 2 \ 3 \ 4 \ 6 \ 7 \ 8 \ 9 \)

Examples of polynomial interpolation

• Go to MATLAB demo
 – Vandermonde
 – Polynomial interpolation for small set
 – For larger set

• See that even for six points we have a problem
 – In between the data points, (especially in first and last subintervals), function shows excessive variation.
 – overshoots changes in the data values.
 – As a result, full-degree polynomial interpolation is hardly ever used for data and curve fitting.

• However we saw polynomial interpolation works well when degree is low