Computational Methods
CMSC/AMSC/MAPL 460

Solving nonlinear equations and zero finding

Ramani Duraiswami,
Dept. of Computer Science
Interpolation: wrap up

- Interpolation: Given a function at \(N \) points, find its value at other point(s)
- Polynomial interpolation
 - Monomial, Newton and Lagrange forms
- Piecewise polynomial interpolation
 - Linear, Hermite cubic and Cubic Splines
- Polynomial interpolation is good at low orders
- However, higher order polynomials “overfit” the data and do not predict the curve well in between interpolation points
- Cubic Splines are quite good in smoothly interpolating data
Finding zeroes of functions

• Where does it arise?
• Solving functional equations
 – Polynomials: Quadratic, cubic, quadric, quintic …
 • Galois in 1830 proved that there is no finite sequence of rational operations plus square/cube roots that can solve quintic or higher equations.
 • Aside: Galois died in a duel at a very young age (<21)
 http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galois.html
 – Minimization or maximization of a function
 • Recall if \(f(x) \) has a minimum or maximum, \(df/dx=0 \)
 – Intersection of curves
 – Others
The simplest algorithm: Bisection

• Suppose we know that
 – f is continuous in an interval $[a,b]$
 – $f(a) > 0$ and $f(b) < 0$ OR $f(a) < 0$ and $f(b) > 0$

• What does this tell us about f in the interval $[a,b]$?
 – By continuity, there must be at least one zero somewhere in between!
 – Hold on to this fact and squeeze the interval till we bracket the zero!

• Evaluate $f((a+b)/2)$.
 – If it has the same sign as $f(a)$, then the zero is in $[(a+b)/2, b]$
 – If it has the same sign as $f(b)$, then the zero is in $[a, (a+b)/2]$

• Repeat until the zero is obtained, or the interval is small enough.
Example

- Solve $x = 2^{1/2}$;
 - Find x_* for which $f(x): x^2 - 2$ has a zero
 - Evaluate $f(1)$ and $f(2)$
 - We know $f(1) < 0$ and $f(2) > 0$ [1, 2]
 - Next guess $1^{1/2} : f(1^{1/2}) > 0$ [1, 1^{1/2}]
 - Next guess $1^{1/4} : f(1^{1/4}) < 0$ [1^{1/4}, 1^{1/2}]
 - Next guess $1^{3/8} : f(1^{3/8}) < 0$ [1^{3/8}, 1^{1/2}]
 - ... \[
 \begin{array}{cccc}
 3 & 5 & 13 & 27 \\
 1 & 8 & 16 & 32 & 64 \\
 \end{array}
 \]
 - Will the algorithm ever stop?
 - Always will converge in floating point
 - After 52 steps $a = 1.41421356237309$ $b = 1.41421356237310$
 - Difference smaller than machine epsilon

- This algorithm needs one function evaluation per iteration
Convergence analysis

- For iterative algorithms, we want to know how the error decreases after each iteration
- Here the imprecision in locating the root (or the error), approximately halves each step
- What is the trend in convergence
- Error \(= (x_k - x_*) = e_k \)

\[
e_k = \frac{e_{k-1}}{2} = e_0 2^{-k}
\]

- So if we take logs
- Log error \(= \log e_0 - k \log 2 \)
 - Semilog plot shows linear rate
 - What is the slope here?
- This algorithm is said to have linear convergence
Another algorithm

- Note that in bisection we take the half-way point no matter how close $f(a)$ or $f(b)$ maybe to zero
- Instead let us fit a straight line joining $f(a)$ and $f(b)$
- Find where it becomes zero
- Recall the straight line is
 \[g(x) = f(a) + (x - a) \frac{(f(b) - f(a))}{(b-a)} \]
 \[g(a) = f(a) \quad g(b) = f(a) + f(b) - f(a) = f(b) \]
- Set $g(x) = 0$
 \[x_* = a - f(a) \frac{(b-a)}{(f(b)-f(a))} \]
 Evaluate $f(x_*)$
 Depending on sign of $f(x_*)$ replace a or b with x_*
Modified secant method

- Algorithm is a modified secant method
- Requires one function evaluation per iteration
 - Convergence is superlinear

 \[e_k = c \cdot e_{k-1}^a \]
 \[e_k = c \cdot (c e_{k-2}^a)^a = C e_0^{-ka} \]

 Here \(a \) is the golden ratio \((1+\sqrt{5})/2\)

- What is a secant?
 - In trigonometry it is the function defined as
 \[\sec(z) = 1/\cos(z) \]
 - Here the use is more from the geometry of a circle
 - A SECANT is a line that intersects a circle in exactly two points.
 - Every secant forms a chord.
Secant method

• In bisection and the modified secant method we were required to first bracket a zero
• This can be time consuming … and is indeed the hard part of minimization
• On the other hand once this is done we have ensured convergence
• Instead in the secant method choose two points
• Fit straight line and evaluate its zero
• Choose next point and repeat
Secant method

\[x_{k+1} = x_k - f(x_k) \frac{(x_k - x_{k-1})}{(f(x_k) - f(x_{k-1}))} \]

- When it converges, the convergence is super linear
- Each step the error is raised to a power >1
- Convergence to zero occurs quickly
- But, convergence is not guaranteed till we are near the zero
Newton’s method

• Several ways to derive
 – Taylor series
 – Take secant to tangent …
• I want $f(x_*) = 0$
• But I have $f(x_k)$ which is not zero
• Let me guess that $f(x_k + h)$ will be zero
• $f(x_k + h) = f(x_k) + hf''(x_k) = 0$
• So $h = -f(x_k)/f''(x_k)$
• So $x_{k+1} = x_k + h = x_k - f(x_k)/f''(x_k)$
• Repeat until convergence
• Apply Newton method to square root
• \(X = \sqrt{a} \)
• \(f(x) = x^2 - a \)
• \(f'(x) = 2x \)
• \(x_{k+1} = x_k + h = x_k - \frac{(x_k^2 - a)}{2x_k} \)
• Guess \(\sqrt{2} = 1 \)
• \(1 - (1 - 2)/2 = 1.5 \)
• \(1.5 - (2.25 - 2)/3 = 1.5 - 0.0833 = 1.4167 \)
• ...
• Converges rapidly
Secant method

• Instead in the secant method choose two points
• Fit straight line and evaluate its zero

\[x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \]

• Choose next point and repeat
• Convergence is superlinear
• \(e_{k+1} = c \cdot e_k \phi \)
• \(\phi = \frac{5^{1/2} + 1}{2} = 1.62 \ldots \)
Newton’s method
• Several ways to derive: We choose Taylor series
• I want \(f(x_*) = 0 \)
• But I have \(f(x_k) \) which is not zero
• Let me guess that \(f(x_k+h) \) will be zero
\[
f(x_k+h) = f(x_k) + hf'(x_k) + O(h^2)
\]
• Ignore terms of \(O(h^2) \)
 – Approximate curve locally as straight line
 – When will this not work?
• Solve \(f(x_k) + hf'(x_k) = 0 \) for \(h \)
• So \(h = -\frac{f(x_k)}{f'(x_k)} \)
• So \(x_{k+1} = x_k + h = x_k - \frac{f(x_k)}{f'(x_k)} \)
• Repeat until convergence
Convergence analysis

- For iterative algorithms, we want to know how the error decreases after each iteration.
- We also want to check how much each iteration costs.
- Optimal algorithm is the one that achieves a given error for a given cost.

- Algorithm convergence function evaluations per step:
 - Bisection Linear One
 - Secant Superlinear One
 - Newton Quadratic Two

- Which method is better?
 - Define better:
 - Bisection guaranteed to converge, but slow
 - Secant one evaluation per step Newton: two
 - Newton quadratic convergence Secant super linear
 - Newton needs derivative, which may be unavailable
Comparing convergence

- Suppose cost of function evaluations for derivative and function are similar
- Then let Newton method converge in n steps to error τ
- So $e_0^{2n} \leq \tau$
 - Take logs: $2n \log e_0 \leq \log \tau$
 - So $2n \geq |\log \tau| / |\log e_0|$
 - $n \geq (2)^{\frac{-1}{2}} (|\log \tau| / |\log e_0|)$
- Secant will require s steps to ensure $e_0^{1.62s} \leq \tau$
 - For secant: $s \geq (1.62)^{\frac{-1}{2}} (|\log \tau| / |\log e_0|)$
- Cost of Newton is $2n$ while that of secant is s
- Which is larger?
- Cost_{Newton}/Cost_{Secant} = 2n/s = 1.62 > 1
 - So Secant is cheaper!