Computational Methods
CMSC/AMSC/MAPL 460

Solving nonlinear equations and zero finding

Ramani Duraiswami,
Dept. of Computer Science
Interpolation: wrap up

• Interpolation: Given a function at \(N \) points, find its value at other point(s)

• Polynomial interpolation
 – Monomial, Newton and Lagrange forms

• Piecewise polynomial interpolation
 – Linear, Hermite cubic and Cubic Splines

• Polynomial interpolation is good at low orders

• However, higher order polynomials “overfit” the data and do not predict the curve well in between interpolation points

• Cubic Splines are quite good in smoothly interpolating data
Finding zeroes of functions

• Where does it arise?

• Solving functional equations
 – Polynomials: Quadratic, cubic, quadric, quintic …
 • Galois in 1830 proved that there is no finite sequence of rational operations plus square/cube roots that can solve quintic or higher equations.
 • Aside: Galois died in a duel at a very young age (<21) http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galois.html
 – Minimization or maximization of a function
 • Recall if \(f(x) \) has a minimum or maximum, \(\frac{df}{dx}=0 \)
 – Intersection of curves
 – Others
The simplest algorithm: Bisection

• Suppose we know that
 – f is continuous in an interval $[a,b]$
 – $f(a) > 0$ and $f(b) < 0$ OR $f(a) < 0$ and $f(b) > 0$

• What does this tell us about f in the interval $[a,b]$?
 – By continuity, there must be at least one zero somewhere in between!
 – Hold on to this fact and squeeze the interval till we bracket the zero!

• Evaluate $f((a+b)/2)$.
 – If it has the same sign as $f(a)$, then the zero is in $[(a+b)/2, b]$
 – If it has the same sign as $f(b)$, then the zero is in $[a,(a+b)/2]$

• Repeat until the zero is obtained, or the interval is small enough.
Example

• Solve $x=2^{1/2}$;
 – Find x_* for which $f(x):x^2-2$ has a zero
 – Evaluate $f(1)$ and $f(2)$
 – We know $f(1)<0$ and $f(2)>0$ [1,2]
 – Next guess $1\frac{1}{2}$: $f(1\frac{1}{2}) >0$ [1,1\frac{1}{2}]
 – Next guess $1\frac{1}{4}$: $f(1\frac{1}{4}) <0$ [1\frac{1}{4},1\frac{1}{2}]
 – Next guess $1\frac{3}{8}$: $f(1\frac{3}{8}) <0$ [1\frac{3}{8},1\frac{1}{2}]
 – …

\[
\begin{array}{cccc}
3 & 5 & 13 & 27 \\
1\frac{1}{8}, & 1\frac{1}{16}, & 1\frac{13}{32}, & 1\frac{27}{64}, \ldots
\end{array}
\]

• Will the algorithm ever stop?
 – Always will converge in floating point
 – After 52 steps $a = 1.41421356237309$ $b = 1.41421356237310$
 – Difference smaller than machine epsilon

• This algorithm needs one function evaluation per iteration
Convergence analysis

- For iterative algorithms, we want to know how the error decreases after each iteration.
- Here the imprecision in locating the root (or the error), approximately halves each step.
- What is the trend in convergence?
- Error $= (x_k - x_*) = e_k$

 \[
 e_k = \frac{e_{k-1}}{2} \\
 e_k = e_0 / 2^k = e_0 2^{-k}
 \]

- So if we take logs
- Log error = $\log e_0 - k \log 2$
 - Semilog plot shows linear rate
 - What is the slope here?
- This algorithm is said to have linear convergence.
Another algorithm

- Note that in bisection we take the half-way point no matter how close \(f(a) \) or \(f(b) \) maybe to zero
- Instead let us fit a straight line joining \(f(a) \) and \(f(b) \)
- Find where it becomes zero
- Recall the straight line is

\[
g(x) = f(a) + (x - a) \frac{(f(b) - f(a))}{(b - a)}
\]

\[
g(a) = f(a) \quad g(b) = f(a) + f(b) - f(a) = f(b)
\]

- Set \(g(x) = 0 \)

\[
x_* = a - \frac{f(a)(b-a)}{(f(b)-f(a))}
\]

Evaluate \(f(x_*) \)

Depending on sign of \(f(x_*) \) replace \(a \) or \(b \) with \(x_* \)
Modified secant method

- Algorithm is a modified secant method
- Requires one function evaluation per iteration
 - Convergence is superlinear
 \[e_k = c \, e_{k-1}^a \]
 \[e_k = c \, (ce_{k-2})^a = Ce_0^{-ka} \]
 Here \(a \) is the golden ratio \((1+\sqrt{5})/2\)

- What is a secant?
 - In trigonometry it is the function defined as
 \(\sec(z) = 1/\cos(z) \)
 - Here the use is more from the geometry of a circle
 - A SECANT is a line that intersects a circle in exactly two points.
 - Every secant forms a chord.
Secant method

- In bisection and the modified secant method we were required to first bracket a zero.
- This can be time consuming … and is indeed the hard part of minimization.
- On the other hand once this is done we have ensured convergence.
- Instead in the secant method choose two points.
- Fit straight line and evaluate its zero.
- Choose next point and repeat.
Secant method

\[x_{k+1} = x_k - f(x_k) \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \]

- When it converges, the convergence is super linear
- Each step the error is raised to a power > 1
- Convergence to zero occurs quickly
- But, convergence is not guaranteed till we are near the zero
Newton’s method

• Several ways to derive
 – Taylor series
 – Take secant to tangent …

• I want \(f(x_*) = 0 \)

• But I have \(f(x_k) \) which is not zero

• Let me guess that \(f(x_k + h) \) will be zero

• \(f(x_k + h) = f(x_k) + hf'(x_k) = 0 \)

• So \(h = -f(x_k)/f'(x_k) \)

• So \(x_{k+1} = x_k + h = x_k - f(x_k)/f'(x_k) \)

• Repeat until convergence
• Apply Newton method to square root
• X=sqrt(a)
• f(x)=x^2 – a
• f'(x)=2x
• x_{k+1}=x_k + h=x_k -(x_k^2-a)/2x_k
• Guess sqrt(2) = 1
• 1-(1-2)/2=1.5
• 1.5-(2.25-2)/3 = 1.5-0.0833=1.4167
• ...
• Converges rapidly
Secant method

- Instead in the secant method choose two points
- Fit straight line and evaluate its zero
 \[x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \]
- Choose next point and repeat
- Convergence is superlinear
 \[e_{k+1} = c \cdot e_k^\phi \]
 \[\phi = \frac{5^{1/2} + 1}{2} = 1.62 \ldots \]
Newton’s method

• Several ways to derive: We choose Taylor series
• I want $f(x_*)=0$
• But I have $f(x_k)$ which is not zero
• Let me guess that $f(x_k+h)$ will be zero
 $f(x_k+h) = f(x_k) + hf'(x_k) + O(h^2)$
 Ignore terms of $O(h^2)$
 – Approximate curve locally as straight line
 – When will this not work?
• Solve $f(x_k) + hf'(x_k) = 0$ for h
 So $h = -f(x_k)/f'(x_k)$
• So $x_{k+1} = x_k + h = x_k - f(x_k)/f'(x_k)$
• Repeat until convergence
Convergence analysis

• For iterative algorithms, we want to know how the error decreases after each iteration
• We also want to check how much each iteration costs
• Optimal algorithm is the one that achieves a given error for a given cost
• Algorithm convergence function evaluations per step
 • Bisection Linear One
 • Secant Superlinear One
 • Newton Quadratic Two
• Which method is better?
• Define better:
 • Bisection guaranteed to converge, but slow
 • Secant one evaluation per step Newton: two
 • Newton quadratic convergence Secant super linear
 • Newton needs derivative, which may be unavailable
Comparing convergence

• Suppose cost of function evaluations for derivative and function are similar

• Then let Newton method converge in \(n \) steps to error \(\tau \)

• So \(e_0^{2n} \leq \tau \)

 – Take logs: \(2n \log e_0 \leq \log \tau \)

 – So \(2n \geq | \log \tau | / |\log e_0| \) \(n \geq (2)^{-1} (| \log \tau | / |\log e_0|) \)

• Secant will require \(s \) steps to ensure \(e_0^{1.62s} \leq \tau \)

 – For secant: \(s \geq (1.62)^{-1} (| \log \tau | / |\log e_0|) \)

• Cost of Newton is \(2n \) while that of secant is \(s \)

• Which is larger?

\[\frac{\text{Cost}_{\text{Newton}}}{\text{Cost}_{\text{Secant}}} = \frac{2n}{s} = 1/(1.62)^{-1} = 1.62 > 1 \]

 – So Secant is cheaper!
Infinite cycles

- Newton's method could iterate forever!

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

- cycles back and forth around a point \(a \) if

\[x_{n+1} - a = -(x_n - a) \]

- This happens if

\[x - a - \frac{f(x)}{f'(x)} = - (x - a) \]

 - Rewrite as an ODE for \(f \)

\[\frac{f'(x)}{f(x)} = \frac{1}{2(x - a)} \]

 - Solution

\[f(x) = \text{sign}(x - a) \sqrt{|x - a|} \]

 - Such cycles could exist with secant methods as well.
Inverse Quadratic Interpolation

- Secant method fits a straight line to predict zero from two previous values.
- We could instead fit a parabola to predict the zero from three values!
- However parabola may not intersect x axis (straight line will always)
 - In this case roots will be complex
- Idea of inverse quadratic interpolation
 - Fit a parabola $x = f(y^2)$ instead of a parabola $y = f(x^2)$
 - Evaluate it at 0
- Problem: polynomial interpolation needs the points (here function values) to be distinct
- Cannot guarantee this!
- So method may not converge
- However near solution it converges very rapidly

```plaintext
k = 0;
fa = f(a);
fb = f(b);
fc = f(c);
while abs(c-b) > eps*abs(c)
    x = polyinterp([fa,fb,fc],[a,b,c],0)
    a = b; fa = fb;
    b = c; fb = fc;
    c = x; fc = f(x);
    k = k + 1;
end
```
Guaranteed methods: Zeroin

- Start with a and b so that $f(a)$ and $f(b)$ have opposite signs.
- Use a secant step to give c between a and b.
- Repeat until $|b - a| < \varepsilon |b|$ or $f(b) = 0$.
 - Arrange a, b, and c so that
 - $f(a)$ and $f(b)$ have opposite signs.
 - $|f(b)| < |f(a)|$
 - c is the previous value of b.
- If $c \neq a$, consider an IQI step.
- If $c = a$, consider a secant step.
- If the IQI or secant step is in the interval $[a,b]$, take it.
- If the step is not in the interval, use bisection.