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Abstract

We present a general framework for characterizing the ob-
ject identity in a single image or a group of images with
each image containing a transformed version of the ob-
ject, with applications to face recognition. In terms of the
transformation, the group is made of either many still im-
ages or frames of a video sequence. The object identity
is either discrete- or continuous-valued. This probabilistic
framework integrates all the evidence of the set and handles
the localization problem, illumination and pose variations
through subspace identity encoding. Issues and challenges
arising in this framework are addressed and efficient com-
putational schemes are presented. Good face recognition
results using the PIE database are reported.

1 Introduction

Visual face recognition is an important task. Even though a
lot of research has been carried out, current state-of-the-art
recognizers still yield unsatisfactory results especially when
confronted with pose and illumination variations. In addi-
tion, the recognizers are further complicated by the registra-
tion requirement as the images that the recognizers process
contain transformed appearances of the object. Below, we
simply use the term ‘transformation’ to model the variations
involved, be it registration, pose and/or illumination varia-
tions.

While most recognizers process a single image, there is a
growing interest in using a group of images [11, 20, 14, 12,
10, 17, 6]. In terms of the transformations embedded in the
group or the temporal continuity between the transforma-
tions, the group can be either independent or not. Examples
of the independent group (I-group) are face databases that
store multiple appearances for one object. Examples of the
dependent group are video sequence with temporal continu-
ity. If the temporal information is stripped, video sequences
reduce to I-groups. In this paper, whenever we mention
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video sequences, we mean dependent groups of images.

Approaches that use I-groups can be rough divided into
two categories. The first category is based on manifold
matching. In [11], hypothetical identity surfaces are con-
structed by computing the linear coefficients of view space.
Illumination variations are not accounted for. Discriminant
features are then extracted to overcome other variations. In
[6], manifolds are formed for every I-group. Recognition is
performed by computing the shortest distance between two
manifolds. The manifold takes a certain parameterized form
and the parameters are directly learned from the visual ap-
pearances. Robustness to pose and illumination variations
are not reported. The second category is based on statistical
learning. In [14], a multi-variate Gaussian density is fit-
ted for every I-group. Recognition is achieved by comput-
ing the Kullback-Leibler distance [4] between two Gaussian
densities. However, the Gaussian assumption is easily vio-
lated if pose and illumination variations exist. In [17], prin-
cipal subspaces are learned for each I-group and principal
angel between two principal subspace are used for recog-
nition. The computation of principal angle is also carried
on the feature space embedded by kernel functions. One
common disadvantage of the above approaches is that they
also assume that the face regions have already been cropped
beforehand, using either a detector or a tracker.

Approaches using video sequences utilize temporal in-
formation for recognition as well. In [20], simultaneous
tracking and recognition is implemented in a probabilistic
framework. The joint posterior probability of the track-
ing parameter and the identity variable is approximated us-
ing the sequential important sampling (SIS) algorithm and
the marginal posterior probability of the identity variable is
used for recognition. However, only affine localization pa-
rameter is used for tracking and handling pose and illumina-
tion variations are not reported. In addition, exemplars are
learned from the gallery videos to cover pose and illumina-
tion variations. In [12], hidden Markov models are used to
learn the dynamics before successive appearances. In [10],
pose variations are handled by learning the view-discretized
appearance manifolds from the training ensemble. Transi-
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tion probabilities from one view to another view are used
to regularize the search space. However, in [12, 10], the
cropped images are used for testing.

In this paper, we propose a generic framework which
possesses the following features: (i) It processes either a
single image or a group of images (including I-group and
video sequence). (ii) It handles the localization problem,
illumination and pose variations. (iii) The identity descrip-
tion could be either discrete or continuous. The continuous
identity encoding typically arises from a subspace model-
ing. (iv) It is probabilistic and integrates all the available
evidence.

In Section 2 we introduce the generic framework which
provides a probabilistic characterization of the object iden-
tity. In Section 3 we address issues and challenges arising
in this framework. In Section 4 we focus on how to achieve
an identity encoding which is invariant to localization, illu-
mination and pose variations. In Section 5, we present some
efficient computational methods. In Section 6, we present
experimental results. In Section 7, we conclude our paper
and briefly summarize potential future works.

2 Probabilistic Identity Characteri-
zation

Supposeα is the identity signature, which represents the
identity in an abstract manner. It can be either be discrete-
or continuous- valued. If we have aC-class problem,α is
discrete taking value in{1, 2, ...,C}. If we associate the
identity with image intensity or feature vectors derived from
say subspace projections,α is continuous-valued. Given a
group of imagesy

1:N

.
= {y

1
, ..., yN} containing the ap-

pearances of the same but unknown identity,probabilistic
identity characterization is equivalent to finding the poste-
rior probability p(α|y

1:N ). Probabilistic modeling is com-
monly used in computer vision and applications. See [9].

As the image only contains a transformed version of the
object, we also need to associate it a transformation param-
eterθ, which lies in a transformation spaceΘ. The trans-
formation spaceΘ is usually application dependent. Affine
transformation is often used to compensate for the localiza-
tion problem. To handle illumination variation, the lighting
direction is used. If pose variation is involved, 3D transfor-
mation is needed or a discrete set is used if we quantize the
continuous view space.

We assume that the prior probability ofα is π(α), which
is assumed to be, in practice, anon-informativeprior. A
non-informative prior is uniform in the discrete case and
treated as a constant, say1, in the continuous case.

The key to our probabilistic identity characterization is
as follows:

p(α|y
1:N ) ∝ π(α)p(y

1:N |α)

= π(α)

∫

θ1:N

p(y
1:N |θ1:N , α)p(θ1:N )dθ1:N

= π(α)

∫

θ1:N

N
∏

t=1

p(yt|θt, α)p(θt|θ1:t−1)dθ1:N , (1)

where the following rules, namely (a)observational condi-
tional independenceand (b)chain rule, are applied:

(a) p(y
1:N |θ1:N , α) =

N
∏

t=1

p(yt|θt, α); (2)

(b) p(θ1:N ) =

N
∏

t=1

p(θt|θ1:t−1); p(θ1|θ0)
.
= p(θ1). (3)

Equation (1) involves two key quantities: theobserva-
tion likelihoodp(yt|θt, α) and thestate transition proba-
bility p(θt|θ1:t−1). The former is essential to a recognition
task, the ideal case being that it possesses a discriminative
power in the sense that it always favors the correct identity
and disfavors the others; the latter is also very helpful espe-
cially when processing video sequences, which constrains
the search space.

We now study two special cases ofp(θt|θ1:t−1).

2.1 Independent group (I-group)

In this case, the transformations{θt; t = 1, . . . , N} are in-
dependent of each other, i.e.

p(θt|θ1:t−1) = p(θt). (4)

Eq. (1) becomes

p(α|y
1:N ) ∝ π(α)

N
∏

t=1

∫

θt

p(yt|θt, α)p(θt)dθt. (5)

In this context, the probabilityp(θt) can be regarded as a
prior for θt, which is often assumed to be Gaussian with
meanθ̂ or non-informative.

The most widely studied case in the literature isN = 1,
i.e. there is only a single image in the group. Due to its im-
portance, sometime we will distinguish it from the I-group
(with N > 1) depending on the context. We will present
in Section 3 the shortcomings of many contemporary ap-
proaches.

It all boils down to how to compute the integral in (5) in
real application. In the sequel, we will show how to approx-
imate it efficiently.

2.2 Video sequence

In the case of video sequence, temporal continuity between
successive video frames implies that the transformations
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{θt; t = 1, . . . , N} follow a Markov chain. Without loss
of generality, we assume a first-order Markov chain, i.e.

p(θt|θ1:t−1) = p(θt|θt−1). (6)

Eq. (1) becomes

p(α|y
1:N ) ∝ π(α)

∫

θ1:N

N
∏

t=1

p(yt|θt, α)p(θt|θt−1)dθ1:N . (7)

The difference between (5) and (7) is whether the prod-
uct lies inside or outside the integral. In (5), the product lies
outside the integral, which divides the quantity of interest
into ‘small’ integrals that can be computed efficiently; while
(7) does not have such a decomposition, causing computa-
tional difficulty.

2.3 Difference from Bayesian estimation

Our framework is very different from the traditional
Bayesian parameter estimation setting, where a certain pa-
rameterβ should be estimated from the i.i.d. observa-
tions {x1, x2, ..., xN} generated from a parametric density
p(x|β). If we assume thatβ has a prior probabilityπ(β),
then the posterior probabilityp(β|x1:N ) is computed as

p(β|x1:N ) ∝ π(β)p(x1:N |β) = π(β)

N
∏

t=1

p(xt|β) (8)

and used to derive the parameter estimateβ̂. One should not
confuse our transformation parameterθ with the parameter
β. Notice thatβ is fixed inp(xt|β) for different t’s. How-
ever, eachyt is associates with aθt. Also, α is different
from β in the sense thatα describes the identity andβ helps
to describe the parametric density.

To make our framework more general, we can also incor-
porate theβ parameter by letting the observation likelihood
bep(y|θ, α, β). Equation (1) then becomes

p(α|y
1:N ) ∝ π(α)p(y

1:N |α) (9)

= π(α)

∫

β,θ1:N

p(y
1:N |θ1:N , α, β)p(θ1:N )π(β)dθ1:Ndβ

= π(α)

∫ N
∏

t=1

p(yt|θt, α, β)p(θt|θ1:t−1)π(β)dθ1:Ndβ,

whereθ1:N andβ are assumed to be statistically indepen-
dent. In this paper, we will focus only on (1) as if we already
know the true parameterβ in (9). This greatly simplifies our
computation.

3 Recognition Setting and Issues

Equation (1) lays a theoretical foundation, which is univer-
sal for all recognition settings: (i) recognition is based on

a single image (an I-group withN = 1), an I-group with
N ≥ 2, or a video sequence; (ii) the identity signature is ei-
ther discrete- or continuous-valued; and (iii) the transforma-
tion space takes into account all available variations, such as
localization and variations in illumination and pose.

3.1 Discrete identity signature

In a typical pattern recognition scenario, say aC-class prob-
lem, the identity signature fory

1:N , α̂, is determined by the
Bayesian decision rule:

α̂ = arg max
{1,2,...,C}

p(α|y
1:N ). (10)

Usuallyp(y|θ, α) is a class-dependent density, either pre-
specified or learned. This is a well studied problem and we
will not focus on this.

3.2 Continuous identity signature

If the identity signature is continuous-valued, two recog-
nition schemes are possible. The first is to derive a point
estimateα̂ (e.g. conditional mean, mode) fromp(α|y

1:N )
to represent the identity of image groupy

1:N . Recognition
is performed by matchinĝα’s belonging to different groups
of images using a metrick(., .). Say,α̂1 is for group 1 and
α̂2 for group 2, the point distance

k̂1,2
.
= k(α̂1, α̂2)

is computed to characterize the difference between groups
1 and 2.

Instead of comparing the point estimates, the second
scheme directly compares different distributions that char-
acterize the identities for different groups of images. There-
fore, for two groups 1 and 2 with the corresponding poste-
rior probabilitiesp(α1) andp(α2), we use the following
expected distance [18]

k̄1,2
.
=

∫

α1

∫

α2

k(α1, α2)p(α1)p(α2)dα1dα2.

Ideally, we wish to compare the two probability distribu-
tions using quantities such as the Kullback-Leibler distance
[4]. However, computing such quantities is numerically
prohibitive whenα is of high dimensionality.

The second scheme is preferred as it utilizes the com-
plete statistical information, while in the first one, pointes-
timates use partial information. For examples, if only the
conditional mean is used, the covariance structure or higher-
order statistics is thrown away. However, there are circum-
stances when the first scheme makes sense: the posterior
distributionp(α|Y1:N ) is highly peaked or even degenerate
at α̂. This might occur when (i) the variance parameters are
taken to be very small; or (ii) we letN go to∞, i.e. keep
observing the same object for a long time.
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3.3 The effects of the transformation

Even though recognition based on single images has been
conducted for a long time, most efforts assume only
one alignment parameter̂θ and compute the probability
p(y|θ̂, α). Any recognition algorithm computing some dis-
tance measures can be thought of as using a properly de-
fined Gibbs distribution. The underlying assumption is that

p(θ) = δ(θ − θ̂), (11)

whereδ(.) is an impulse function. Using (11), (5) becomes

p(α|y) ∝ π(α)

∫

θ

p(y|θ, α)δ(θ − θ̂)dθ = π(α)p(y|θ̂, α).

(12)
Incidentally, if the Laplace’s method is used to approxi-

mate the integral (refer to the Appendix I for details) and the
maximizerθ̂α = arg maxθ p(y|θ, α)p(θ) does not depend
onα, sayθ̂α = θ̂, then

p(α|y) ∝ π(α)

∫

θ

p(y|θ, α)p(θ)dθ

' π(α)p(y|θ̂, α)p(θ̂)

√

(2π)r/|I(θ̂)|. (13)

This gives rise to the same decision rule as implied by (12)
and also partly explains why the simple assumption (11) can
work in practice.

The alignment parameter is therefore very crucial for a
good recognition performance. Even a slightly erroneous
θ̂ may affect the recognition system significantly. It is
very beneficial to have a continuous densityp(θ) such as
a Gaussian or even a non-informative since marginalization
of p(θ, α|y) overθ yields a robust estimate ofp(α|y).

In addition, our Bayesian framework also provides a way
to estimate the best alignment parameter through the poste-
rior probability:

p(θ|y) ∝

∫

α

p(y|θ, α)π(α)dα. (14)

3.4 Asymptotic behaviors

When we have an I-group or a video sequence, we are often
interested in discovering the asymptotic (or large-sample)
behaviors of the posterior distributionp(α|y

1:N ) whenN is
large. In [20], the discrete case ofα in a video sequence is
studied. However it is very challenging to extend this study
to a continuous case. Experimentally (refer to Section 6),
we find thatp(α|y

1:N ) becomes more and more peaked as
N increase, which seems to suggest a degenerancy in the
true valueαtrue.

4 Subspace Identity Encoding

The main challenge is to specify the likelihoodp(y|θ, α).
Practical considerations require that (i) the identity encod-
ing coefficientα is compact so that our target space where
α resides is of low dimensional; and (ii)α should be invari-
ant to transformations and tightly clustered so that we can
safely focus on a small portion of the spaces.

Inspired by the popularity of subspace analysis, we as-
sume that the observationy can be well explained by a sub-
space, whose basis vectors are encoded in a matrix denoted
by B, i.e. there exists linear coefficientsα such thaty ≈ Bα.
Clearly, α naturally encodes the identity. However, the
observation under the transformation condition (parameter-
ized byθ) deviates from the canonical condition (parame-
terized by saȳθ) under which theB matrix is defined. To
achieve an identity encoding that is invariant to the transfor-
mation, there are two possible ways. One way is to inverse-
warp the observationy from the transformation conditionθ
to the canonical condition̄θ and the other way is to warp
the basis matrixB from the canonical condition̄θ to the
transformation conditionθ. In practice, inverse-warping is
typically difficult. For example, we cannot easily warp an
off-frontal view to a frontal view without explicit 3D depth
information that is unavailable. Hence, we follow the sec-
ond approach, which is also known asanalysis-by-synthesis
approach. We denote the basis matrix under the transforma-
tion conditionθ by Bθ.

4.1 Invariant to localization, illumination,
and pose

Localization parameter, denoted byε, includes the face lo-
cation, scale and in-plane rotation. Typically, an affine
transformation is used. We absorb the localization param-
eterε in the observation usingTε{y}, where theTε is a lo-
calization operator, cropping the patch of interest and nor-
malizing it match with the size of the basis.

The illumination parameter, denoted byλ, is a vec-
tor specifying the illuminant direction (and intensity if re-
quired). The pose parameter, denoted byυ, is a continuous-
valued random variable. However, practical systems [3,
8] often discretize this due to the difficulty in handling
3D to 2D projection. Suppose the quantized pose set
is {1, . . . , V }. To achieve pose invariance, we concate-
nate all the images [8]{y1, . . . , yV } under all the views
and a fixed illuminationλ to form a ’huge’ vectorYλ =
[y1,λ, ..., yV,λ]T. To further achieve invariance to illumina-
tion, we invoke the Lambertian reflectance model, ignoring
shadow pixels. Now,λ is actually a 3-D vector describing
the illuminant. Since allyv ’s are illuminated by the sameλ,
the Lambertian model gives,

Yλ = Wλ. (15)
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Following [19] we assume that

W =

m
∑

i=1

αiWi, (16)

we have

Yλ =

m
∑

i=1

αiWiλ, (17)

where Wi’s are illumination-invariant bilinear basis and
α = [α1, . . . , αm]T provides an illuminant-invariant iden-
tity signature. Those bilinear basis can be easily learned as
shown in [7, 19]. Thusα is also pose-invariant because, for
a given viewυ, we take the part inY corresponding to this
view and still have

yλ,υ =
m

∑

i=1

αiW
υ
i λ. (18)

In summary, the basis matrixBθ for θ = (ε, λ, υ) with ε
absorbed iny is expressed asBλ,υ = [Wυ

1
λ, . . . , Wυ

mλ].
We focus on the following likelihood:

p(y|θ) = p(y|ε, λ, υ, α)

= Z−1

λ,υ,α exp{−D(Tε{y}, Bλ,υα)}, (19)

whereD(y, Bθα) is some distance measure andZλ,υ,α is
the so-called partition function which plays a normalization
role. In particular, if we takeD as

D(Tε{y}, Bλ,υα) = (Tε{y}−Bλ,υα)TΣ−1(Tε{y}−Bλ,υα)/2,
(20)

with a givenΣ (sayΣ = σ2I whereI is an identity ma-
trix), then (19) becomes a multivariate Gaussian and the
partition functionZλ,υ,α does not depend on the parame-
ters any more. However, even though (19) is a multivariate
Gaussian, the posterior distributionp(α|y

1:N ) is no longer
Gaussian.

5 Computational Issues

5.1 The integral

If the transformation spaceΘ is discrete, it is easy to eval-
uate the integral1

∫

θ
p(y|θ, α)p(θ)dθ, which becomes a

sum. If Θ is continuous, in general, computing integral
∫

θ
p(y|θ, α)p(θ)dθ is a difficult task. Many techniques

are available in the literature. Here we mainly focus on
two techniques: Monte Carlo simulation [13] and Laplace’s
method [2, 13].

1We drop the subscript[.]t notation as this is a general treatment.

Monte Carlo simulation.The underlying principle is the
law of large number (LLN). If{x1, x2, . . . , xK} areK i.i.d.
samples of the densityp(x), for any bounded functionh(x),

lim
K→∞

1

K

K
∑

k=1

h(xk) =

∫

x
h(x)p(x)dx = Ep[h]. (21)

Alternatively, when drawing i.i.d. samples fromp(x) is
difficult, we can use importance sampling [13]. Suppose
that the importance functionq(x) has i.i.d. realizations
{x1, x2, . . . , xK}. The pdfp(x) can be represented by a
weighted set samples{(xk, wk

p)}K
k=1

, where the weight for
the samplexk is

wk
p = p(xk)/q(xk), (22)

in the sense that for any bounded functionh(x),

lim
K→∞

K
∑

k=1

wk
ph(xk) =

K
∑

k=1

p(xk)

q(xk)
h(xk) = Ep[h]. (23)

Laplace’s method [2, 13].The general approach of this
method is presented in Appendix-I. This is a good approx-
imation to the integral, only if the integrand is uniquely
peaked and reasonably mimics the Gaussian function.

In our context, we use importance sampling (or i.i.d sam-
pling if possible) forε and the Laplace’s method forλ and
enumerateυ. We draw i.i.d. samples{ε1, ε2, . . . , εK}
from q(ε) and, for each sampleεk, compute the weight
wεk = p(εk)/q(εk). If the i.i.d. sampling is used, the
weights are always ones. Putting things together, we have
(assumingπ(α) is a non-informative prior)

p(α|y) ∝

∫

ε,λ,υ

p(y|ε, λ, υ, α)p(ε)p(λ)p(υ)dεdλdυ

'
1

K

K
∑

k=1

wεk

1

V

V
∑

υ=1

p(y|εk, λ̂εk,υ,α, υ, α) ×

p(λ̂εk,υ,α)

√

(2π)r/|I(λ̂εk,υ,α)|, (24)

whereλ̂εk,υ,α is the maximizer

λ̂εk,υ,α = arg min
λ

p(y|εk, λ, υ, α)p(λ), (25)

r is the dimensionality ofλ, andI(λ̂ε,υ,α) is a properly de-
fined matrix. Refer to Appendix-II for computinĝλε,υ,α

andI(λ̂ε,υ,α) if the likelihood is given as (19) and (20) and
a non-informative priorp(λ) is assumed. Similar deriva-
tions can be conducted for an I-group of observationsy

1:N .

5.2 The distances̄k and k̂

To evaluate the expected distancek̄, we resort to Monte
Carlo method. In our context, the target distribution is
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c22

c02

c37

c05

c27

c29

c11

c14

c34

f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02

Figure 1: Examples of the face images of one PIE object under
the selected illumination and poses actually used in recognition.

p(α|y
1:N ). Based on the above derivations, we know how

to evaluate the target distribution, but not to draw sample
from it. Therefore, we use the importance sampling. Other
sampling techniques such as Monte Carlo Markov chain
[13] can be applied too.

Suppose that, say for group 1, the importance function
is q1(α1), and weighted sample set is{αi

1
, wi

1
}I

i=1
, the ex-

pected distance [18] is approximated as

k̄1,2 '

∑I

i=1

∑J

j=1
wi

1
wj

2
k(αi

1
, αj

2
)

∑I

i=1
wi

1

∑J

j=1
wj

2

. (26)

The point distance is approximated as

k̂1,2 ' k(

∑I

i=1
wi

1
αi

1
∑I

i=1
wi

1

,

∑J

j=1
wj

2
αj

2

∑J

j=1
wj

2

). (27)

6 Experimental Results

We use the ‘illum’ subset of the PIE database [15] in our
experiments. This subset has 68 subjects under 21 illumi-
nation and 13 poses. Out of the 21 illumination, we select
12 of them denoted byF ,

F = {f16, f15, f13, f21, f12, f11, f08, f06, f10, f18, f04, f02},

which typically span the set of variations. Out of the 13
poses, we select 9 of them denoted byC,

C = {c22, c02, c37, c05, c27, c29, c11, c14, c34},

which cover from the left profile to the frontal to the right
profile. In total, we have68 ∗ 12 ∗ 9 = 7344 images. Fig
1 displays one PIE object under the illumination and pose
variations.

We randomly divide the 68 subjects into two parts. The
first 34 subjects are used in the training set and the remain-
ing 34 subjects are used in the gallery and probe sets. It
is guaranteed that there is no identity overlap between the
training set and the gallery and probe sets.

During training, the images are pre-preprocessed by
aligning the eyes and mouth to desired positions. No flow
computation is carried on for further alignment. After the
pre-processing step, the used face image is of size 48 by 40,
i.e. d = 48 ∗ 40 = 1920. Also, we only study gray images
by taking the average of the red, green, and blue channels
of their color versions.

The training set is used to learn the basis matrixBθ or
the bilinear basisWi’s. As mentioned before,θ includes
the illumination directionλ and the view poseυ, wheres
is a continuous-valued random vector andυ is a discrete
random variable taking values in{1, . . . , V } with p = 9
(corresponding toC).

The images belonging to the remaining 34 subjects are
used in the gallery and probe sets. The construction of the
gallery and probe sets conforms the following: To form a
gallery set of the 34 subjects, for each subject, we use an
I-group of 12 images under all the illumination under one
poseυp; to form a probe set, we use I-groups under the other
poseυg. We mainly concentrate on the case withυp 6= υg.
Thus, we have9 ∗ 8 = 72 tests, with each test giving rise
to a recognition score. The 1-NN (nearest neighbor) rule is
applied to find the identity for a probe I-group.

During testing, we no longer use the pre-processed im-
ages and therefore the unknown transformation parameter
includes the affine localization parameter, the light direc-
tion, and the discrete view pose. The prior distribution
p(εt) is assumed to be a Gaussian, whose mean is found
by a background subtraction algorithm and whose covari-
ance matrix is manually specified. We use i.i.d. sampling
from p(εt) since it is Gaussian. The metrick(., .) actually
used in our experiments is the correlation coefficient:

k(x, y) = {(xTy)2}/{(xTx)(yTy)}.

Fig. 2 shows the marginal posterior distribution of the
first elementα1 of the identity variableα, i.e.,p(α1|y

1:N ),
with differentN ’s. From Fig. 2, we notice that (i) the pos-
terior probabilityp(α1|y

1:N ) has two modes, which might
fail those algorithms using the point estimate, and (ii) it be-
comes more peaked and tightly-supported asN increases,
which empirically supports the asymptotic behavior men-
tioned in Section 3.

Fig. 3 shows the recognition rates for all the 72 tests.
In general, when the poses of the gallery and probe sets are
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Figure 3:The recognition rates of all tests. (a) Our method based onk̄. (b) Our method based on̂k. (c) The PCA approach [16]. (d) The
KL approach. Notice the different ranges of values for different methods and the diagonal entries should be ignored.

far apart, the recognition rates decrease. The best gallery
sets for recognition are those in frontal poses and the worst
gallery sets are those in profile views. For a comparison,
Table 1 shows the average recognition rates for four differ-
ent methods: our two probabilistic approaches usingk̄ and
k̂, respectively, the PCA approach [16], and the statistical
approach [14] using the KL distance. When implement-
ing the PCA approach, we learned a generic face subspace
from all the training images, stripping their illuminationand
pose conditions; while implementing the KL approach, we
fit a Gaussian density on every I-group and the learning
set is not used. Our approaches outperform the other two
approaches significantly due to the transformation-invariant
subspace modeling. The KL approach [14] performs even
worse than the PCA approach simply because no illumina-
tion and pose learning is used in the KL approach while
the PCA approach has a learning algorithm based on im-
age ensembles taken under different illumination and poses
(though this specific information is stripped). The state-of-
the-art face recognition algorithm using the PIE database
is [1]. However, they used the ‘lights’ portion of the PIE
database with an ambient light always present and the color
images, which make the recognition task relatively easy.

Method k̄ k̂ PCA KL [14]
Rec. Rate (top 1) 82% 76% 36% 6%
Rec. Rate (top 3) 94% 91% 56% 15%

Table 1:Recognition rates of different methods.

As earlier mentioned in Section 3.3, we can infer the
transformation parameters using the posterior probability
p(θ|y

1:N ). Fig. 2 also shows the obtainedp(υ|y
1:12

) for

one probe I-group. In this case, the actual pose isυ = 5
(i.e. camerac27), which has the maximum probability in
Fig. 2(d). Similarly, we can find an estimation forε, which
is quite accurate as the back ground subtraction algorithm
already provides a clean position.

7 Conclusions and Discussions

We presented a generic framework of modeling human
identity for a group of images. This framework provides
a complete statistic description of the identity. We also pro-
posed a subspace identity encoding that is invariant to lo-
cation, illumination and pose variations. Our experimental
results confirm the effectiveness of this approach.

We are now investigating the following: (i) Robustness
to occlusions. We currently take input images without oc-
clusions. The existence of occlusions will degrade our per-
formances. Robust statistics can be used to handle occlu-
sions. (ii) Without too much difficulty, we can extend our
approach to perform recognition from video sequences with
localization, illumination, and pose variations. We plan to
use Sequential Monte Carlo methods [5] to exploit temporal
continuity.
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Appendix I – Laplace’s method [2, 13]

We are interested in computing the following quantity, for
θ = [θ1, θ2, . . . , θr]

T ∈ Rr, J =
∫

p(θ)dθ. Suppose that

θ̂ is the maximizer ofp(θ) or equivalentlylog p(θ) which
satisfies

∂p(θ)

∂θ
|
θ̂

= 0 or
∂ log p(θ)

∂θ
|
θ̂

= 0. (28)

We expandlog p(θ) aroundθ̂ using a Taylor series:

log p(θ) ' log p(θ̂) −
1

2
(θ − θ̂)TI(θ̂)(θ − θ̂), (29)

whereI(θ) is anr × r matrix whoseijth element is

Iij(θ) = −
∂2 log p(θ)

∂θi∂θj

. (30)

Note that the first-order term in (29) is cancelled using (28).
If p(θ) is a pdf function with parameterθ, thenI(θ) is the
famous Fisher information matrix [13]. Substituting (29)
into J gives

J ' p(θ̂)

∫

exp{−
1

2
(θ − θ̂)TI(θ̂)(θ − θ̂)}dθ

= p(θ̂)

√

(2π)r/|I(θ̂)|. (31)

Appendix II – About λ̂ε,υ,α

If a non-information priorp(λ) is assumed2, the maximizer
λ̂ε,υ,α satisfies

λ̂ε,υ,α = arg max
λ

p(y|ε, λ, υ, α) (32)

= arg min
λ

(Tε{y} − Bλ,υα)T(Tε{y} − Bλ,υα)

= arg min
λ

L(ε, υ, λ, α)

whereL(ε, υ, λ, α)
.
= (Tε{y}−Bλ,υα)T(Tε{y}−Bλ,υα).

Using the fact that

Bλ,υα = [Wυ
1
λ, . . . , Wυ

mλ]α = Bα,υλ; Bα,υ
.
=

m
∑

i=1

αiW
υ
i ,

(33)
The termL(ε, υ, λ, α) becomes

L(ε, υ, λ, α) = (Tε{y}−Bα,υλ)T(Tε{y}−Bα,υλ), (34)

which is quadratic inλ. The optimumλ̂ε,υ,α is unique and
its value is

λ̂ε,υ,α = (Bα,υ
TBα,υ)−1Bα,υ

Ty = Bα,υ
†Tε{y}. (35)

where [.]† is the pseudo-inverse. Substituting (35) into
L(ε, υ, λ, α) yields

L(ε, υ, λ̂ε,υ,α, α) = Tε{y}T(Id−Bα,υBα,υ
†)Tε{y}. (36)

It is easy to show thatI(λ) is no longer a function ofλ and
equals to

I = σ−2Bα,υ
TBα,υ. (37)

2If a Gaussian prior is assumed, a similar derivation can be carried.
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