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Abstract video sequences, we mean dependent groups of images.

Approaches that use I-groups can be rough divided into
two categories. The first category is based on manifold
matching. In [11], hypothetical identity surfaces are con-
structed by computing the linear coefficients of view space.
, : on. In terms of the |, mination variations are not accounted for. Discrimiba
transformation, the group is made of either many St_lll M- features are then extracted to overcome other variations. |
ages or frames of a video sequence. The object identityg) anifolds are formed for every I-group. Recognition is
is either d|§crete— or contmuou_s—valued. This probahiis performed by computing the shortest distance between two
framework integrates all the evidence of the set and handles;ifo|ds. The manifold takes a certain parameterized form

the localization problem, illumination and pose varia®on 5 the parameters are directly learned from the visual ap-
through subspace identity encoding. Issues and challenges,orances. Robustness to pose and illumination variations

arising in this framework are addressed and efficient COM- are not reported. The second category is based on stdtistica
putatlonall schemes are presented. Good face recognltlonleaming_ In [14], a multi-variate Gaussian density is fit-
results using the PIE database are reported. ted for every I-group. Recognition is achieved by comput-
ing the Kullback-Leibler distance [4] between two Gaussian
densities. However, the Gaussian assumption is easily vio-
lated if pose and illumination variations exist. In [17]impr
cipal subspaces are learned for each I-group and principal
angel between two principal subspace are used for recog-
nition. The computation of principal angle is also carried
on the feature space embedded by kernel functions. One

c_onfrcr)]nted W'th. pose an? |Ilrl:m|nat|on|_ Va”%t't? nsr.] In a‘?'d" common disadvantage of the above approaches is that they
tion, the recognizers are further complicated by the remist 5154 555ume that the face regions have already been cropped

tion requirement as the images that the recognizers Procesfatorehand using either a detector or a tracker
contain transformed appearances of the object. Below, we ' '

We present a general framework for characterizing the ob-
ject identity in a single image or a group of images with
each image containing a transformed version of the ob-
ject, with applications to face recognition.

1 Introduction

Visual face recognition is an important task. Even though a
lot of research has been carried out, current state-oéthe-
recognizers still yield unsatisfactory results espegiathen

simply use the term ‘transformation’ to model the variasion Approaches using video sequences utilize temporal in-
involved, be it registration, pose and/or illuminationigar ~ formation for recognition as well. In [20], simultaneous
tions. tracking and recognition is implemented in a probabilistic

While most recognizers process a single image, there is d'2mework. The joint posterior probability of the track-
growing interest in using a group of images [11, 20, 14, 12, N9 parameter a_nd lthe identity vangble is approxmated us-
10, 17, 6]. In terms of the transformations embedded in the "9 the sequential important sampling (SIS) algorithm and
group or the temporal continuity between the transforma- the marginal po;t.erlor probability of thelldentlty _varlghﬂ;
tions, the group can be either independent or not. Examples,usecj for recognition. However, only affine localization pa-
of the independent group (I-group) are face databases thafameter |s_used for tracking and handlln_g_pose and illumina-
store multiple appearances for one object. Examples of thelion variations are not rep.orted. In addition, exemplaes. ar
dependent group are video sequence with temporal continu/€arned from the gallery videos to cover pose and illumina-
ity. If the temporal information is stripped, video sequesic tion variations. In [12], hidden Markov models are used to

reduce to I-groups. In this paper, whenever we mention learn thg dynamlcs before successive appearances. In'[10],
pose variations are handled by learning the view-diserdtiz

*Partially supported by the DARPA/ONR Grant NO0014-03-2@5 appearance manifolds from the training ensemble. Transi-




tion probabilities from one view to another view are used — rla / 01 n. 0D (018 )db
to regularize the search space. However, in [12, 10], the () O P vl61:nv, )P (Brv) b

cropped images are used for testing. N
In this paper, we propose a generic framework which = () H P(Y.|0:, )P (6:]01:0—1)d01.n, (1)
possesses the following features: (i) It processes either a O1:n =1

single image or a group of images (including I-group and
video sequence). (ii) It handles the localization problem
illumination and pose variations. (iii) The identity deiger

tion could be either discrete or continuous. The continuous

where the following rules, namely (apservational condi-
' tional independencand (b)chain rulg are applied:

?dentit_y en(_:oding typ_i_ca_lly arise_:s from a subspace model- (a) p(Yy.x]01.n, @) = H p(Y,|6:, a); 2)
ing. (iv) It is probabilistic and integrates all the avaikab =1
evidence.
In Section 2 we introduce the generic framework which )
provides a probabilistic characterization of the objeenid (0) p(0r:x) = [ P(Bel0r:e—1): P(02]00) = P(61). (3)

tity. In Section 3 we address issues and challenges arising =1

in this framework. In Section 4 we focus on how to achieve ~ Equation (1) involves two key quantities: tiserva-

an identity encoding which is invariant to localizationyil ~ tion likelihood p(y, |0, a) and thestate transition proba-

mination and pose variations. In Section 5, we present somebility p(6:|01.:—1). The former is essential to a recognition

efficient computational methods. In Section 6, we presenttask, the ideal case being that it possesses a discrimenativ

experimental results. In Section 7, we conclude our paperPower in the sense that it always favors the correct identity

and briefly summarize potential future works. and disfavors the others; the latter is also very helpfukesp
cially when processing video sequences, which constrains

e . . ) the search space.
2 Probabilistic Identity Characteri- We now study two special casesgb:|01.:_1).

zation
2.1 Independent group (I-group)

Supposex is the identity signature, which represents the ) ) )
identity in an abstract manner. It can be either be discrete-I" this case, the transformatiofé; ¢t = 1,..., N} are in-
or continuous- valued. If we haveGclass problemg is dependent of each other, i.e.
discrete taking value i{1,2,...,C}. If we associate the 0.10 _ (6 4
identity with image intensity or feature vectors deriveahfr P(O:/01:4-1) = p(0h). “)
say subspace projections,is continuous-valued. Given a
group of images/,.y = {Yy,...Yx} containing the ap-
pearances of the same but unknown idenpitpbabilistic N
identity characterization is equivalent to finding the most p(alyy.ny) o () H/ p(Y,|0:, a)p(6:)db;. (5)
rior probability p(«|y;., ). Probabilistic modeling is com- t=1"0t

monly used in computer vision and applications. See [9]. : .
As the image only contains a transformed version of the In.th|s context,_the. probabilitp (¢.) can be regarde.d as a
prior for 6;, which is often assumed to be Gaussian with

object, we also need to associate it a transformation param—m 6 or non-informativ
eterd, which lies in a transformation spaée The trans- e‘I?he 3105? wideol s?udiee.d case in the literaturéVis— 1
formation space® is usually application dependent. Affine y '

transformation is often used to compensate for the localiza l.e. there is only a single Image In th? group. Due to its im-
tion problem. To handle illumination variation, the lighdi portance, sometime we will distinguish it from the I-group

direction is used. If pose variation is involved, 3D tramsfo (with N > 1) depending on the context. We will present

mation is needed or a discrete set is used if we quantize the" Section 3 the shortcomings of many contemporary ap-

: . roaches.

continuous view space. P . . . .

We assume that the prior probability @fis 7(«), which Itall bplls_down to how to comput-e the integral in (5) in
is assumed to be, in practice,nan-informativeprior. A real apphcgt.lon. In the sequel, we will show how to approx-
non-informative prior is uniform in the discrete case and imate it efficiently.
treated as a constant, shyin the continuous case. _

The key to our probabilistic identity characterization is 2.2 Video sequence
as follows:

Eqg. (1) becomes

In the case of video sequence, temporal continuity between
p(aly;.n) x m(a@)p(Yi.nl) successive video frames implies that the transformations



{0;;t = 1,...,N} follow a Markov chain. Without loss a single image (an I-group withv = 1), an I-group with
of generality, we assume a first-order Markov chain, i.e. N > 2, or avideo sequence; (ii) the identity signature is ei-
ther discrete- or continuous-valued; and (iii) the transia-
P(0¢)01:t—1) = P(6t|0r—1). ) tion space takes into account all available variationsh sisc
Eq. (1) becomes localization and variations in illumination and pose.

N - - - -
plalyin) xrla) [ T[pWiloalp(@rls)dsry. (7) 3.1 Discreteidentity signature
4

1IN =1

In a typical pattern recognition scenario, s&g-alass prob-

The difference between (5) and (7) is whether the prod- lem, the identity signature for,. v, &, is determined by the
uct lies inside or outside the integral. In (5), the prodieg|  Bayesian decision rule:
outside the integral, which divides the quantity of intéres

into ‘small’ integrals that can be computed efficiently; lehi @ =arg 2% Plafyr.n)- (10)
(7) does not have such a decomposition, causing computa- ) ) )
tional difficulty. Usually p(y|0, «) is a class-dependent density, either pre-

specified or learned. This is a well studied problem and we

. . . . will not focus on this.
2.3 Difference from Bayesian estimation

Our framework is very different from the traditional 3.2 Continuous identity signature

Bayesian parameter estimation setting, where a certain pa- i o ) )

rameter 3 should be estimated from the i.i.d. observa- If the identity signature is continuous-valued, two recog-
tions {X1, Xz, ..., Xy } generated from a parametric density nition schemes are possible. The first is to derive a point
p(x|3). If we assume thaB has a prior probabilityr(/3), estimated (e.g. conditional mean, mode) frop{aly,. )

then the posterior probability(3|x;.x ) is computed as to represent the identity of image group,,. Recognition
is performed by matching’s belonging to different groups

N of images using a metric(., .). Say,&; is for group 1 and
p(BIxa:n) o 7 (B)p(xa:n|B) = 7(8) [ [ p(xelB)  (8) & for group 2, the point distance
t=1

. s Ky = k(d1,d2)
and used to derive the parameter estintat®ne should not
confuse our transformation paramefewith the parameter  is computed to characterize the difference between groups

3. Notice thatg is fixed inp(x;|3) for different¢'s. How- land 2.

ever, eacty, is associates with &. Also, « is different Instead of comparing the point estimates, the second
from (3 in the sense that describes the identity angihelps scheme directly compares different distributions that-cha
to describe the parametric density. acterize the identities for different groups of images.réhe

To make our framework more general, we can also incor- fore, for two groups 1 and 2 with the corresponding poste-
porate the3 parameter by letting the observation likelihood rior probabilitiesp(a;) andp(az), we use the following
bep(y|f, «, 5). Equation (1) then becomes expected distance [18]

plaly;.y) o< m(a)p(yy.yle) 9) Kio= / / K (a1, as)p (a1 )p(as)dardas.
= ) /ﬁ,alzN P(Y1.n 01N, ¢, B)P(01:8)m(3)db1.nd B Ideally, we wish to compare the two probability distribu-
N tions using quantities such as the Kullback-Leibler diséan
77(04)/Hp(ytlﬁt,Ouﬁ)p(Gt\91;t—1)7r(ﬂ)d91:1vdﬂ7 [4]. However, computing such quantities is numerically
t=1 prohibitive whenx is of high dimensionality.

The second scheme is preferred as it utilizes the com-
plete statistical information, while in the first one, poas-
timates use partial information. For examples, if only the
conditional mean is used, the covariance structure or highe
order statistics is thrown away. However, there are circum-
stances when the first scheme makes sense: the posterior
3 Recognition Setting and Issues distributionp (|Y1. ) is highly peaked or even degenerate

ata. This might occur when (i) the variance parameters are
Equation (1) lays a theoretical foundation, which is univer taken to be very small; or (ii) we le¥ go to oo, i.e. keep
sal for all recognition settings: (i) recognition is based o0 observing the same object for a long time.

wheref;.y and 3 are assumed to be statistically indepen-
dent. In this paper, we will focus only on (1) as if we already
know the true parametétin (9). This greatly simplifies our
computation.



3.3 The effects of the transformation 4 Subspace ldentity Encoding

Even though recognition based on single images has beerrhe main challenge is to specify the likelihopdy/|d, ).
conducted for a long time, most efforts assume only Practical considerations require that (i) the identityaehc
one alignment parametél and compute the probability ing coefficienta is compact so that our target space where
p(y|é, «). Any recognition algorithm computing some dis- « resides is of low dimensional; and (ii)should be invari-
tance measures can be thought of as using a properly deant to transformations and tightly clustered so that we can
fined Gibbs distribution. The underlying assumption is that safely focus on a small portion of the spaces.
X Inspired by the popularity of subspace analysis, we as-
p(@)=4(60—10), (11) sume that the observatigncan be well explained by a sub-
space, whose basis vectors are encoded in a matrix denoted
whered(.) is an impulse function. Using (11), (5) becomes byB, i.e. there exists linear coefficienissuch thay ~ Ba.
Clearly, o naturally encodes the identity. However, the
A A observation under the transformation condition (paramete
p(aly) o< m(a) /0 P(yl0, )3 (6 — 0)do = m(c)p(yl6, ). ized by6) deviates from the canonical condition (parame-
(12) terized by sayl) under which theB matrix is defined. To
Incidentally, if the Laplace’s method is used to approxi- achieve an identity encoding that is invariant to the transf
mate the integral (refer to the Appendix | for details) arel th mation, there are two possible ways. One way is to inverse-
maximizerd, = argmaxy p(y|0,«)p(0) does not depend  warp the observatiop from the transformation conditiaf
ona, sayéa =0, then to the canonical conditiod and the other way is to warp
the basis matriX8 from the canonical conditiod to the

' transformation conditiod. In practice, inverse-warping is

plaly) o 7(a) /9 P(ylf, a)p(6)do typically difficult. For example, we cannot easily warp an
R R - off-frontal view to a frontal view without explicit 3D depth

=~ m(a)p(yld,a)p(0)y/ (2m)" /[l (0)]. (13)  information that is unavailable. Hence, we follow the sec-

ond approach, which is also knownasalysis-by-synthesis

This gives rise to the same decision rule as implied by (12) approach. We denote the basis matrix under the transforma-
and also partly explains why the simple assumption (11) cantion conditiond by By.
work in practice.

The alignment parameter is therefore very crucial fora 4 1 |nvariant to localization, illumination,
good recognition performance. Even a slightly erroneous
2 N I : and pose
# may affect the recognition system significantly. It is
very beneficial to have a continuous dengit}f) such as  Localization parameter, denoted byincludes the face lo-
a Gaussian or even a non-informative since marginalizationcation, scale and in-plane rotation. Typically, an affine
of p(0, aly) overd yields a robust estimate of(«|y). transformation is used. We absorb the localization param-

In addition, our Bayesian framework also provides away etere in the observation using.{y}, where theZ; is a lo-
to estimate the best alignment parameter through the postecalization operator, cropping the patch of interest and nor
rior probability: malizing it match with the size of the basis.

The illumination parameter, denoted by is a vec-

tor specifying the illuminant direction (and intensity &-r
p(Oly) o /a p(y|0, a)m(e)da. (14) quired). The pose parameter, denotedbis a continuous-
valued random variable. However, practical systems [3,
8] often discretize this due to the difficulty in handling
3.4 Asymptotic behaviors 3D to 2D projection. Suppose the quantized pose set

] is {1,...,V}. To achieve pose invariance, we concate-
When we have an I-group or a video sequence, we are oftenate all the images [8]y",....y"} under all the views

interested in discovering the asymptotic (or large-sainple and a fixed illumination\ to form a *huge’ vectory® —
behaviors of the posterior distributigraly,. y) whenn is y**, ...,yV*]T. To further achieve invariance to illumina-
Iargg. In [20], the _dl_screte case @fm- a video sequence IS tion, we invoke the Lambertian reflectance model, ignoring
studied. However it is very challenging to extend this study shadow pixels. Now) is actually a 3-D vector describing
to a continuous case. Experimentally (refer to Section 6), the illuminant. Since aly*’s are illuminated by the same

we find thatp(aly,. ) becomes more and more peaked as . | o mpertian model gives

N increase, which seems to suggest a degenerancy in the ’
true valueay, ye. Y* = WA (15)



Following [19] we assume that Monte Carlo simulationThe underlying principle is the
law of large number (LLN). Ifx*,x%, ..., x5} areK i.i.d.
samples of the density(x), for any bounded functioh(x),

i=1
lim— /h (x)dx = Ep[h]. (21)
we have K—oo K P
= Z%‘Wi)\, a7) Alternatively, when drawing i.i.d. samples frop{x) is

difficult, we can use importance sampling [13]. Suppose
that theimportance functionq(x) has i.i.d. realizations
{x1,x2,...,x5}. The pdfp(x) can be represented by a
weighted set samplegx”, w§) };_,, where the weight for
the samplex* is

where W;’s are illumination-invariant bilinear basis and
a = |ag,.. .7am]T provides an illuminant-invariant iden-
tity signature. Those bilinear basis can be easily learsed a
shown in [7, 19]. Thusy is also pose-invariant because, for
a_given viev_w, we take the part ity corresponding to this wf) = p(x*)/q(x*), (22)
view and still have

in the sense that for any bounded functioix),

= aWyA (18) K p
i=1 lim Z w’f) h(x*
k=1

K—oo

=Eplh]. (23)

In summary, the basis matrBy for § = (¢, A\, v) with ¢
absorbed ity is expressed &, , = WA, ..., W, Al
We focus on the following likelihood:

Laplace’s method [2, 13]The general approach of this
method is presented in Appendix-I. This is a good approx-
imation to the integral, only if the integrand is uniquely
peaked and reasonably mimics the Gaussian function.

PYIO) = Pyl A v,e) In our context, we use importance sampling (or i.i.d sam-
= Z3,.op{-D(T-{y},Brva)}, (19)  piing if possible) fore and the Laplace’s method forand
. _ _ enumeratev. We draw i.i.d. samplege!,e?, ... 5}
whereD(y, Bpa) is some distance measure afd,.. IS from qg(c) and, for each sample®, compute the weight
the so-called partition function which plays a normaliaati woe = p(¥)/q(ek). If the ii.d. sampling is used, the

role. In particular, if we tak®as weights are always ones. Putting things together, we have
Tel: (assumingr(«) is a non-informative prior)

D(Z{y}, Bava) = (Ze{y}—Biva) X (TE{Y}—BA,(Z%))/Z

with a givenY (sayX = o2l wherel is an identity ma- plaly) o /6A . P(yle, A, v, )p(e)p(A)p(v)dedAdy

trix), then (19) becomes a multivariate Gaussian and the X 1V

partition functionZ, ,, , does not depend on the parame- ~ = ngk - Z p(y|5k7 ;\Ek v,a0 Uy Q) X

ters any more. However, even though (19) is a multivariate K Vi o

Gaussian, the posterior distributipricr|y;. 5 ) is no longer R A

Gaussian. o p()\ek,v,a)\/(%)r/“ (Aek w0l (24)
wherel.x ., , is the maximizer

5 Computational Issues Aot o = argminp(ylh A v, )p(N),  (25)

5.1 The integral r is the dimensionality of, and! ()., ) is a properly de-

If the transformation spad® is discrete, it is easy to eval- fined matrix. Refer to Appendix-II for computing.. .,
uate the integral [, p(y|d,a)p(A)dd, which becomes a andl (..o if the likelihood is given as (19) and (20) and
sum If@ |s continuous, in general, computing integral @ non-informative priop(A) is assumed. Similar deriva-
[,p(y|8,a)p(0)dd is a difficult task. Many techniques tions can be conducted for an I-group of observatipng.
are avallable in the literature. Here we mainly focus on

two techniques: Monte Carlo simulation [13] and Laplace’s 5.2 The distance¥k and k

method [2, 13]. _
[ ) To evaluate the expected distancewe resort to Monte

1we drop the subscrift]; notation as this is a general treatment. Carlo method. In our context, the target distribution is
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Figure 1: Examples of the face images of one PIE object under
the selected illumination and poses actually used in recognition.

p(aly,.y). Based on the above derivations, we know how
to evaluate the target distribution, but not to draw sample
from it. Therefore, we use the importance sampling. Other
sampling techniques such as Monte Carlo Markov chain
[13] can be applied too.

Suppose that, say for group 1, the importance function
is g, (1), and weighted sample setfis!, wi}_,, the ex-
pected distance [18] is approximated as

Zz 1 Z; 1 w1w2k(a1, 042)

k . (26)
e Zz] L wi Zj LW
The point distance is approximated as
1 Qi J o)
R ~ k(Zi:l w10 Zj=1 U)%Oé%) (27)
1,2 — T P 7 j .
2im1 Wi Zj:l wy

6 Experimental Results

We use the ‘illum’ subset of the PIE database [15] in our

experiments. This subset has 68 subjects under 21 illumi-

nation and 13 poses. Out of the 21 illumination, we select
12 of them denoted by,

= {f16af153f137f217f127f117f087f067f107f18af04,f02}3

which typically span the set of variations. Out of the 13
poses, we select 9 of them denotedy

C = {c22, co2, €37, Co5, C27, €29, C11, C14, C34 |,

which cover from the left profile to the frontal to the right
profile. In total, we haveé8 x 12 x 9 = 7344 images. Fig

1 displays one PIE object under the illumination and pose
variations.

We randomly divide the 68 subjects into two parts. The
first 34 subjects are used in the training set and the remain-
ing 34 subjects are used in the gallery and probe sets. It
is guaranteed that there is no identity overlap between the
training set and the gallery and probe sets.

During training, the images are pre-preprocessed by
aligning the eyes and mouth to desired positions. No flow
computation is carried on for further alignment. After the
pre-processing step, the used face image is of size 48 by 40,
i.e. d = 48 x 40 = 1920. Also, we only study gray images
by taking the average of the red, green, and blue channels
of their color versions.

The training set is used to learn the basis maBjxor
the bilinear basidV;’s. As mentioned before] includes
the illumination direction\ and the view pose, wheres
is a continuous-valued random vector ands a discrete
random variable taking values ifi,...,V} with p = 9
(corresponding t@).

The images belonging to the remaining 34 subjects are
used in the gallery and probe sets. The construction of the
gallery and probe sets conforms the following: To form a
gallery set of the 34 subjects, for each subject, we use an
I-group of 12 images under all the illumination under one
posev,; to form a probe set, we use I-groups under the other
posev,. We mainly concentrate on the case with# v,.
Thus, we havé) « 8 = 72 tests, with each test giving rise
to a recognition score. The 1-NN (nearest neighbor) rule is
applied to find the identity for a probe I-group.

During testing, we no longer use the pre-processed im-
ages and therefore the unknown transformation parameter
includes the affine localization parameter, the light direc
tion, and the discrete view pose. The prior distribution
p(e:) is assumed to be a Gaussian, whose mean is found
by a background subtraction algorithm and whose covari-
ance matrix is manually specified. We use i.i.d. sampling
from p(e;) since it is Gaussian. The metikg., .) actually
used in our experiments is the correlation coefficient:

k(x,y) = {(xTy)2} {(xTx)(yTy)}.

Fig. 2 shows the marginal posterior distribution of the
first element! of the identity variabley, i.e.,p(atly;.y),
with different N's. From Fig. 2, we notice that (i) the pos-
terior probabilityp(a'|y,. ) has two modes, which might
fail those algorithms using the point estimate, and (i)t b
comes more peaked and tightly-supported\agcreases,
which empirically supports the asymptotic behavior men-
tioned in Section 3.

Fig. 3 shows the recognition rates for all the 72 tests.
In general, when the poses of the gallery and probe sets are
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Figure 2: The posterior distributionp (o' ly,. ) with different N's: (a) p(a'ly,); (b) p(atly,.¢); and (€)p(atly;.;»), and (d) the
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Figure 3:The recognition rates of all tests. (a) Our method basekl ¢h) Our method based da (c) The PCA approach [16]. (d) The
KL approach. Notice the different ranges of values for differenthmés and the diagonal entries should be ignored.

far apart, the recognition rates decrease. The best galleryone probe I-group. In this case, the actual pose is 5
sets for recognition are those in frontal poses and the worst(i.e. cameracs;), which has the maximum probability in
gallery sets are those in profile views. For a comparison, Fig. 2(d). Similarly, we can find an estimation fgrwhich
Table 1 shows the average recognition rates for four differ- is quite accurate as the back ground subtraction algorithm
ent methods: our two probabilistic approaches ugirand already provides a clean position.

k, respectively, the PCA approach [16], and the statistical

approach [14] using the KL distance. When implement- ) ] ]

ing the PCA approach, we learned a generic face subspacd ~Conclusions and Discussions

from all the training images, stripping their illuminatiand . )

pose conditions; while implementing the KL approach, we We presented a generic framework of modeling human
fit a Gaussian density on every I-group and the learning identity for a group of images. This framework provides
set is not used. Our approaches outperform the other two? Complete statistic description of the identity. We also-pr
approaches significantly due to the transformation-imvdri ~ P0Sed & subspace identity encoding that is invariant to lo-
subspace modeling. The KL approach [14] performs even cation, |Ilum|nat|on and pose varlatlops. Our experimenta
worse than the PCA approach simply because no illumina-résults confirm the effectiveness of this approach.

tion and pose learning is used in the KL approach while ~ We are now investigating the following: (i) Robustness
the PCA approach has a learning algorithm based on im-t© oc_:clusions. We currently take ?nput ir_nages without oc-
age ensembles taken under different illumination and posesFlusions. The existence of occlusions will degrade our per-
(though this specific information is stripped). The stafte-0 fqrmanggs. .Robust statistics can be used to handle occlu-
the-art face recognition algorithm using the PIE databaseSions. (ii) Without too much difficulty, we can extend our
is [1]. However, they used the ‘lights’ portion of the PIE apprpach to perfolrm recognition from V|lde.o sequences with
database with an ambient light always present and the colofocalization, illumination, and pose variations. We plan t
images, which make the recognition task relatively easy. ~ Use Sequential Monte Carlo methods [5] to exploit temporal

continuity.
Method K k | PCA | KL[14]
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Appendix | — Laplace’s method [2, 13]  equalsto
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We are interested in computing the following quantity, for

0 =101,02,..., HT]T € R",J = [p(#)df. Suppose that 2If a Gaussian prior is assumed, a similar derivation can béechrr




