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Abstract

Human recognition from video requires solving the two
tasks, recognition and tracking, simultaneously. This leads
to a parameterized time series state space model, repre-
senting both motion and identity of the human. Sequen-
tial Monte Carlo (SMC) algorithms, like CONDENSATION

[3], can be developed to offer numerical solutions to this
model. However, in outdoor environments, the solution is
more likely to diverge from the foreground, causing fail-
ures in both recognition and tracking. In this paper, we
propose an approach for tackling this problem by incorpo-
rating the constraint of temporal continuity in the observa-
tions. Experimental results demonstrate improvements over
its CONDENSATION counterpart.

1. Introduction

Bayesian analysis of video has recently gained signifi-
cant attention in the computer vision community since the
seminal work of Isard and Blake [3]. In their effort to solve
the problem of visual tracking, they introduced a time series
state space model parameterized by a tracking state vector
(e.g. affine parameters) and developed the CONDENSATION

algorithm to provide a numerical approximation to the pos-
terior distribution of the state vector and to propagate it over
time according to the state equation. This approach has
been extended to many areas [1, 6, 11], including human
recognition using a variety of biometrics, e.g., face, human
body. Refer to [4] for a general review of statistical pattern
recognition, and to [10] for a recent survey on face recogni-
tion.

Reported in [11] is an extension to video-based human
recognition, with the gallery and the probe [9] consisting
of still templates and video sequences respectively. In this
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work, the time series state space model is re-parameterized
by a tracking state vector and a recognizing identity vari-
able, characterizing the dynamics and identity of a hu-
man, assuming temporal constancy in the identity variable.
The observation is modeled as a transformed and noise-
corrupted version of a template in the gallery. By employ-
ing the SMC technique, the joint distribution of the state
vector and the identity variable is estimated at current time
and then propagated to the next, governed by the evolving
equations for the state vector and the identity variable. The
marginal distribution of the identity variable is just a free
estimate, which provides the recognition result.

However, it turns out that, when confronting some
nontrivial circumstances, e.g., inhomogeneous background
and non-uniformly illuminated foreground, this formulation
may lead to a solution that is more likely to move away from
the foreground, causing failures in both tracking and recog-
nition. In this paper, we propose a two-stage approach to
tackle this problem by separating the tasks of tracking and
recognition at one stage and integrating them at the other
stage. This approach essentially incorporates the tempo-
ral continuity constraint in the observations [7]. The SMC
framework is used to compute the posterior probability.

In the following, Sec. 2 briefly reviews the time se-
ries state space model for recognition and practical model
choices. Sec. 3 first introduces the CONDENSATION like al-
gorithm to solve the model, addresses its weakness con-
fronting the nontrivial situations, and then proposes the two-
stage SMC algorithm in order to overcome the weakness.
Experimental results are included, and Sec. 4 concludes the
paper.

2 State Space Model for Recognition

Let I denote an image represented using raw intensity
values on the image regionR, i.e. I(R), and letf(I; θ) de-
note the transformed version of imageI undergoing a pho-
tometric transformation (e.g. histogram equalization) and a
geometric transformation, parameterized by an affine state



vectorθ = (a1, a2, a3, a4, tx, ty) where{a1, a2, a3, a4} are
deformation parameters and{tx, ty} are 2-D translation pa-
rameters . A hypothesis galleryH consists of still tem-
plate images, i.e.,H = {I1, . . . , IN} which is indexed by
an identity variablen belonging to a finite sample space
N = {1, . . . N}. The time series state space model for
recognition consists of the following components.

1. State equation. Letθt be thestate vector andut the
state noise respectively at timet,

θt = θt−1 + ut; t ≥ 1, (1)

Assume thatp(ut) orp(θt|θt−1) is time-invariant and Gaus-
sian, with its mean and covariance matrix manually set.

2. Identity equation. Assuming that identity does not
change as time proceeds,

nt = nt−1; t ≥ 1, (2)

3. Observation equation. Letyt be theobservation and
vt theobservation noise at timet respectively,

f(yt; θt) = Int
+ vt; t ≥ 1, (3)

Assumep(vt) or the likelihoodp(yt|nt, θt) to be time-
invariant and truncated-Laplacian:

p(yt|nt, θt) ∝

{

exp(−‖vt‖/σ) if ‖vt‖ ≤ λσ
exp(−λ) if ‖vt‖ > λσ,

(4)

where‖I(R)‖ =
∑

r∈R |I(r)|, σ andλ are manually spec-
ified.

4. Prior distributions.p(θ0|y0) is assumed to be Gaus-
sian, whose mean and covariance matrix are manually set.
p(n0|y0) is assumed to be uniform overN , i.e.,

p(n0 = n|y0) = 1/N. (5)

5. Statistical independence:

n0 ⊥ θ0, ut ⊥ vs; t, s ≥ 1

ut ⊥ us, vt ⊥ vs; t, s ≥ 1 & t 6= s, (6)

where⊥ implies statistical independence.
Given this model, the goal is to first evaluate the

joint posterior distributionp(nt, θt|y0:t), where y0:t =
{y0, . . . , yn}, then to marginalize it overθt to yield
p(nt|y0:t). Note thatp(nt|y0:t) is in fact a probability mass
function (pmf) defined on the sample spaceN .

3 Algorithms and Experimental Results

This model is nonlinear, due to the transformation part,
and non-Gaussian, due to the observation noise, and has no
analytic solution. We use SMC techniques [2, 5, 8] to pro-
vide a numerical approximation to the solution. The essence

Algorithm I
Initialize a sample set S0 = {(n(m)

0 , θ
(m)
0 , 1)}M

m=1 accord-
ing to prior distributions p(n0|y0) and p(θ0|y0).
For t = 1, 2, . . .

For m = 1, 2, . . . , M
Resample St−1 = {(n(m)

t−1, θ
(m)
t−1 , α

(m)
t−2)}

M
m=1 to obtain

a new sample (n
′(m)
t−1 , θ

′(m)
t−1 , 1).

Predict sample by drawing (n
(m)
t , θ

(m)
t ) from

p(nt|n
′(m)
t−1 ) and p(θt|θ

′(m)
t−1 ).

Update weight using α
(m)
t = p(yt|n

(m)
t , θ

(m)
t ).

End
Normalize weight using α

(m)
t = α

(m)
t /

∑M

m=1
α

(m)
t .

Marginalize over θt to obtain weight βnt
for nt.

End

Figure 1. The C ONDENSATION-like algorithm I

of SMC is to represent an arbitrary probability distribution
by a set of weighted samples.

One popular SMC algorithm is the CONDENSATION[3].
Fig. 1 describes the Algorithm I, a CONDENSATION-like al-
gorithm, for solving our model. In the context of this prob-
lem, the posterior distributionp(nt, θt|yt) is represented by
the sample setSt = {(n

(m)
t , θ

(m)
t , α

(m)
t )}M

m=1, and the pos-
terior distributionp(nt|yt) is represented by the sample set
{nt, βnt

}N
nt=1 whereβnt is a marginal weight obtained us-

ing the following equation:βnt
=

∑M

m=1,n
(m)
t

=nt

α
(m)
t .

Theoretical discussions on the evolution of the posterior
probability p(nt|y0:t) in this framework and some experi-
mental results are presented in [11].

The success of Algorithm I relies on that fact that likeli-
hood maximizing pair(n̄t, θ̄t) among the generated samples
{(n

(m)
t , θ

(m)
t , α

(m)
t )}M

m=1 is the actual value for tracking
and recognition. There are two issues involved here. One is
how good the state equation characterizes the dynamics is
and the other is the observation equation. We focus on the
latter in this paper.

A detailed examination ofp(yt|nt, θt) shows that the key
is the distance measureD = ‖f(yt; θt) − Int

‖. The like-
lihood maximizing pair(n̄t, θ̄t) possesses the smallest dis-
tanceD. However, this likelihood function may not behave
well under certain nontrivial circumstances, e.g., inhomo-
geneous background and non-uniformly illuminated fore-
ground because (i) the non-uniform illumination causes the
foreground to deviate from the face subspace; (ii) the inho-
mogeneous background tends to absorb samples, and (iii)
time propagation based on these samples yields inferior so-
lution. Fig. 2 presents such an example with some frames
extracted from a probe video and its MAP tracking results
(dashed bounding box) obtained by Algorithm I.

In our experiment, we use video sequences with sub-
jects walking towards a camera in order to simulate typi-



cal scenarios in visual surveillance. There are 30 subjects,
each having one face template and one upper body template.
The face gallery and the upper body gallery are as shown
in Fig. 3. The probe set contains 30 video sequences, one
for each subject. Fig. 2 gives some example frames in one
probe video. These images and videos were collected, as
part of the HumanID project, by National Institute of Stan-
dards and Technology and University of South Florida re-
searchers. Note (i) that the probe set is taken outdoors,
with sunshine casting strong shadow on the face in some
video sequence (see Fig. 2), however, this non-uniform illu-
mination does not vary significantly throughout one probe
video; (ii) that both gallery sets are captured under different
circumstances from the probe and (iii) that the probe has
considerable variations in scale.

In order to overcome these unfavorable conditions, we
propose the following. Since the illumination does not vary
significantly from frame to frame, we first compute the
tracking distributionp(θt|y0:t) by employing this temporal
continuity in the observation, where a tracking templateT
is other than those in the gallery, say a cut version in some
frame of the same video. A second observation equation is
introduced here:

f(yt, θt) = T + r(t), (7)

wherer(t) is the observation noise obeying a truncated-
Laplacian distributionq(yt|θt) with different parametersσ
and λ, originally defined in Eqn. 4. By doing this, the
produced affine samples will gather around the biometric
part. Then, we use Eqn. 3 in order to computep(nt, θt|y0:t)
by binding nt and θt together and obtainp(nt|y0:t) by
marginalizing overθt. This leads to Algorithm II, a two-
stage algorithm, detailed in Fig. 4.

In fact, Eqns. 3 and 7 can be combined to get a new
likelihood: p(yt|nt, θt)q(yt|θt). We can then (i) marginal-
ize overnt to get weights onθt for tracking and resam-
pling; and (ii) marginalize overθt to get weights fornt for
recognition. This will have the same effect as Algorithm II.
In Fig. 4, the sample set{θ(j)

t , w
(j)
t )}J

j=1 characterizes the
tracking distributionp(θt|y0:t), the sample set

{(1, θ
(j)
t , α

(j)
t,1), (2, θ

(j)
t , α

(j)
t,2), . . . , (N, θ

(j)
t , α

(j)
t,N )}J

j=1,

or {(θ(j)
t , α

(j)
t,1 , α

(j)
t,2 , . . . , α

(j)
t,N )}J

j=1 in short, characterizes
the joint distributionp(nt, θt|y0:t) sinceN is a finite sam-
ple space to be enumerated, and{nt, βnt

}N
nt=1 character-

izes the recognizing distributionp(nt|y0:t), whereβnt
is the

marginal weight.
Fig. 2 shows the MAP results (solid bounding box) ob-

tained by Algorithm II. Fig. 5 presents the posterior proba-
bility p(nt|y0:t). We can observe similar convergence to the
correct identity over time as those in [11] for Algorithm II,
while Algorithm I converges to the wrong person. Figure 2. Sample frames in one probe video.

The image size is 720x480 with the actual face
size ranging roughly from 25x25 in to 40x40.



Figure 3. The face and body galleries. The
face size: 70x60 and the body size: 100x75.

Algorithm II
Initialize {(θ(j)

0 , 1)}J
j=1 according to prior distributions

p(θ0|y0) and form {(θ(j)
0 , 1, . . . , 1)}J

j=1 for p(n0, θ0|y0).
For t = 1, . . .

For j = 1, 2, . . . , J
Resample {(θ(j)

t−1, w
(j)
t−1)}

J
j=1 to obtain a new sample

(θ
′(j)
t−1, 1). Set w

′(j)
t−1,n = w

(j)
t−1,n/w

(j)
t−1 for n ∈ N .

Predict sample by drawing θ
(j)
t from p(θt|θ

′(j)
t−1).

Update weight using w
(j)
t = q(yt|θ

′(j)
t−1).

For n = 1, . . . , N
Update weight using

α
(j)
t,n = p(yt|n, θ

(j)
t ) ∗ α

′(j)
t−1,n ∗ w

(j)
t .

End
End
Normalize weight using w

(j)
t = w

(j)
t /

∑J

j=1
w

(j)
t and

α
(j)
t,n = α

(j)
t,n/

∑J,N

j=1,n=1
α

(j)
t,n

Marginalize over θt to obtain weight βnt
for nt.

End

Figure 4. The two-stage algorithm II
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Figure 5. The distribution p(nt|y0:t) obtained
by Algorithm I (left) and II (right). The ’*’ de-
notes the correct identity.

We sum all the weights over time to rank all the tem-
plates in the gallery. It turns out that Algorithm II has an im-
proved performance (roughly 10% higher) over Algorithm
I. However, using the body gallery produces a higher per-
formance than using the face gallery. The reasons might be:
(i) that the body template is bigger than the face template;
(ii) that the non-uniform illumination is prominent only on
the face region; and (iii) that the subjects are wearing the
same dress for the probe and body galleries.

4 Conclusion

We have introduced a time series state space model for
recognition, assuming temporal constancy in the identity
variable. The CONDENSATION-like algorithm is not robust
against certain outdoor imaging conditions, causing failures
in both tracking and recognition. To tackle them, we pro-
pose a two-stage approach that essentially constructs a new
likelihood measurement by using the constraint of tempo-
ral continuity in the observations. It turns out that the im-
proved tracking and recognition are achieved, compared to
its CONDENSATIONcounterpart.
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