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Abstract

The aim of this work is to investigate how to exploit
the temporal information in a video sequence for the task
of face recognition. Following the approach in [11], we
propose a probabilistic model parameterized by a tracking
state vector and a recognizing identity variable, simultane-
ously characterizing the kinematics and identity of humans.
We then invoke a CONDENSATION [8] approach to provide
a numerical solution to the model. Once the joint poste-
rior distribution of the state vector and the identity vari-
able is estimated, we marginalize it over the state vector to
yield a robust estimate of the posterior distribution of the
identity variable. Due to the propagation of identity and
dynamics, a degeneracy in the posterior distribution of the
identity variable is achieved to give improved recognition.
This evolving behavior is characterized using changes in
entropy. The effectiveness of this approach is illustrated us-
ing experimental results on low-resolution video data.

1 Introduction

Face recognition (FR) has been an extensive research
area for over 10 years. See [3, 16] for surveys and [14] for
experiments. Experiments reported in [14] are still-image-
based approaches, including Principal Component Analy-
sis (PCA) [15], Linear Discriminant Analysis (LDA) [7, 1],
Elastic Graph Matching [10], and so on. Usually, an ab-
stract representation of an image after a suitable geometric
and photometric registration is formed and then recognition
is performed based on this new representation.

Research efforts on video data are relatively fewer due
to the following challenges [16] in typical applications like
surveillance and access control: poor video quality, low im-
age resolution, and large illumination and pose variations.
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This requires simultaneous solutions to tracking and recog-
nition. Most video-based FR systems [4] split two tasks
separately by performing the following: the face is first de-
tected and then tracked over time. Only when a ’best’ frame
satisfying certain criteria is acquired, recognition is per-
formed using still-image-based recognition technique. For
this, the face is cropped from the frame and transformed or
registered with appropriate parameters. The right choice of
criteria for selecting good frames and the estimation of pa-
rameters for registration are often determined in an ad hoc
manner.

However, one could solve two tasks simultaneously by
probabilistic reasoning. Following [14], we define the
gallery and probe as follows: the gallery consists of still fa-
cial templates and and the probe consists of video sequences
containing the facial region. Denote the gallery set as
H = fI1; I2; : : : ; INg, indexed by the identity variable n,
which lies in a finite sample space N = f1; 2; : : : ; Ng. We
also adopt the time series state space model to characterize
the evolving kinematics and/or identity in the probe video.
Let xt be the state vector and yt be the observation respec-
tively at time t. Given this model, the goal reduces to com-
puting the posterior distribution of the state vector given the
observations up to time t, denoted by �t(xt) = pt(xtjy0:t)
with y0:t = fy0; y1; : : : ; ytg. The CONDENSATION [8] al-
gorithm, or in general the Sequential Importance Sampling
(SIS) algorithm, can be invoked to generate a numerical so-
lution. Ultimately, we need to estimate the posterior distri-
bution of the identity, �t(nt) = pt(ntjy0:t), where nt is the
human identity variable at time t.

In the scheme proposed by Li and Chellappa [11], the
model is parameterized with an affine tracking state, de-
noted by �t, and �t(�t) is approximated and propagated us-
ing the SIS algorithm. The distribution �t(nt) is estimated
by marginalizing �t(�t) over a proper affine region around
the posterior meanE�(�t). We present it in detail in Section
2.

Following [11], we also propose a probabilistic model
in this paper. We parameterize this model with the affine
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tracking state �t and the recognizing identity variable n t.
The joint distribution �t(nt; �t) is approximated and prop-
agated using the CONDENSATION algorithm. The distribu-
tion �t(nt) is a free estimate from �t(nt; �t), i.e., the true
marginal distribution of �t(nt; �t).

There is no need for selecting good video frames in this
framework. Ultimately, the two tasks, namely discriminat-
ing the identity and determining the transform parameter,
are unified and solved. However, a face detector is still
needed to provide the prior distribution of the state vector.

In the following, Section 2 summarizes some related
work in the literature. Section 3 starts with some basics
of SIS algorithm and then presents the proposed recogni-
tion algorithm. Section 4 introduces the practical choices
in modeling. Section 5 presents and discusses experimental
results, and Section 6 concludes with final remarks.

2 Related Literature

Probabilistic visual tracking in video sequences has re-
cently gained significant attention. Generally, a state space
model is applied to accommodate the dynamics of a video
sequence. The task of visual tracking is reduced to solving
the posterior distribution of the state vector given an obser-
vation. Isard and Blake [8] proposed the CONDENSATION

algorithm to deal with the difficult problem of tracking an
object in a cluttered environment. In [8], the object is rep-
resented by a robust active contour. Near real-time perfor-
mance with high tracking accuracy is achieved. However,
only the tracking problem is considered in [8].

Black and Jepson [2] used a CONDENSATION-based al-
gorithm to match temporal trajectories. Models of tem-
poral trajectories, such as gestures and facial expressions,
are trained beforehand, and are gradually matched against
human motion in a new image sequence. The joint poste-
rior distribution of model selection, local stretching, scal-
ing, and position evolves as time proceeds.

In [12], recognition of face over time is implemented by
constructing a face identity surface. The face is first warped
to a frontal view, and its KDA (Kernel Discriminant Analy-
sis) features over time form a trajectory. It is shown that the
trajectory distance accumulates recognition evidence over
time. However, this recognition is still deterministic.

Li and Chellappa [11] performed simultaneous tracking
and verification via sequential posterior estimation. For
each template k in the gallery, they rectifies it onto the first
frame of the query video. Then, they invoke the SIS algo-
rithm to obtain an updated set of samples for � t(�t). To
compute �t(nt = k), they first evaluate the mean value
E�(�t) of �t, then marginalize �t(�t) over a proper region
A, i.e.,

�t(nt = k) =

Z
A

�t(�t)d�t (1)

where A is a hypercube around E�(�t):

A = [E�(�t)� �; E�(�t) + �]: (2)

They choose as the hypothesis k giving rise to the maxi-
mum probability �t(nt = k). Experimental results on both
synthetic data and real sequences (some using face informa-
tion as well) are presented in [11]. Our method detailed in
Section 4 is somewhat similar to this approach, but there are
significant differences from it. We discuss them in Section
5.

3 SIS and Proposed Algorithm

In this section, we first introduce how to numerically
solve a general time series state space model using SIS al-
gorithm, then propose our algorithm as a special case.

3.1 SIS

A general time series state space model consists of the
following three components:

1. State equation governing the state evolution:

xt = gt(xt�1; ut); t � 1; (3)

where ut is the state noise and gt(:; :) the state evolv-
ing function. Denote the state transition probability as
pt(xtjxt�1).

2. Observation equation depicting the observed behav-
ior:

yt = ht(xt; vt); t � 1; (4)

where vt is the observation noise and ht(:; :) the observation
function. Denote the likelihood as pt(ytjxt).

3. Prior probability p0(x0) and statistical independence:

ut ? vs; t; s � 1

ut ? us; vt ? vs; t; s � 1 & t 6= s (5)

where ? implies statistical independence.
Using this model, we attempt to compute the filtering

posterior probability �t(xt) = p(xtjy0:t). If the model is
linear with Gaussian noise, it is analytically solvable by a
Kalman filter which essentially propagates over time the
mean and variance which completely determines a Gaus-
sian distribution. For nonlinear and non-Gaussian cases,
extended Kalman filter (EKF) and its variants such as the it-
erated extended Kalman filter have been used to arrive at an
approximate solution. Recently, the SIS technique, a special
case of Monte Carlo method, [8, 6, 9, 13] has been used to
provide a numerical solution and to propagate an arbitrary
distribution over time.

The essence of Monte Carlo method is to represent an
arbitrary probability distribution �(x) by a set of discrete
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samples. It is ideal to draw i.i.d. samples fx(m)gMm=1

from �(x). However it is often difficult to implement, es-
pecially for non-trivial distributions. Instead, a set of sam-
ples fx(m)gMm=1 is drawn from an importance function g(x)
which is easy to sample from, then a weight

w(m) = �(x(m))=g(x(m)) (6)

is assigned to each sample. This technique is called Im-
portance Sampling (IS). It can be shown[13] that the im-
portance sample set S = f(x(m); w(m))gMm=1 is properly
weighted to the target distribution �(x). To accommodate a
video, importance sampling is used in a sequential fashion,
which leads to SIS. SIS propagates St�1 according to the
sequential importance function gt(xtjxt�1), and calculates
the weight using

wt = wt�1pt(ytjxt)pt(xtjxt�1)=gt(xtjxt�1): (7)

In the CONDENSATION algorithm [8], gt(xtjxt�1) is taken
to be pt(xtjxt�1) and Eq. (7) becomes

wt = wt�1pt(ytjxt); (8)

In fact, Eq. (8) is implemented by first resampling the sam-
ple set St�1 according towt�1 and then updating the weight
wt using pt(ytjxt). For a complete description of the SIS
method, refer to [6, 13].

3.2 Proposed Algorithm

In the context of this problem, the posterior probability
distribution �t(nt; �t) is represented by a set of indexed
and weighted samples St = f(n(m)

t ; �
(m)
t ; w

(m)
t )gMm=1

with nt as the index. It can be easily shown [17] that
the sample set fnt; �ntg

N
nt=1 representing the distribution

�t(nt) can be constructed by summing the weights of the
samples belonging to the same index nt, i.e.,

�nt =

MX
m=1;n

(m)
t

=nt

w
(m)
t : (9)

The algorithm shown in Fig. 1 is an extension to
CONDENSATION [8] for computing the joint distribution
�t(nt; �t).

4 Model Choices

In this section, we specify the practical model choices
used in this paper.

1. State equation (3) consists of two subequations.

� Motion subequation:

�t = �t�1 + ut; t � 1; (10)

Initialize a sample set S0 = f(n
(m)
0 ; �

(m)
0 ; 1)gMm=1

according to prior distributions p(n0jy0) and p(�0jz0).
For t = 1; 2; : : :

For m = 1; 2; : : : ;M

Resample St�1 = f(n(m)
t�1; �

(m)
t�1 ; w

(m)
t�1)g

M
m=1

to obtain a new sample (n
0(m)
t�1 ; �

0(m)
t�1 ; 1).

Predict sample by drawing (n
(m)
t ; �

(m)
t )

from p(ntjn
0(m)
t�1 ) and p(�tj�

0(m)
t�1 ).

Update weight using �(m)
t = p(ytjn

(m)
t ; �

(m)
t ).

End
Normalize weight using w(m)

t = �
(m)
t =

PM
m=1 �

(m)
t .

Marginalize over �t to obtain weight �nt for nt.
End

Figure 1. The proposed algorithm.

where ut is the motion noise at time t. It is assumed
that ut is time-invariant, Gaussian with its mean and
covariance matrix manually specified. This is a first-
order Gaussian-Markov motion model.

� Identity subequation:

nt = nt�1; t � 1; (11)

assuming that identity does not change as time pro-
ceeds.

2. Observation equation:

f(yt; �t) = Int + vt; t � 1; (12)

where vt is the observation noise at time t. It is assumed
that p(vt) or the likelihood p(ytjnt; �t) is a ’truncated’
Laplacian:

p(ytjnt; �t) =

8>><
>>:

L exp (�kInt � f(yt; �t)k=�)
if kInt � f(yt; �t)k � ��

L exp (��)
if kInt � f(yt; �t)k > ��;

where kI(R)k =
P

r2R jI(r)j, � and � are manually spec-
ified, and L is a normalizing constant. Furthermore, p(v t)
is not time-varying.

Also, � = (a11; a12; a21; a22; tx; ty) where fa11 � a22g
are deformation parameters and ftx; tyg are the 2-D transla-
tion parameters. f(yt; �t) is obtained by the following pro-
cedures: firstly, an affine geometric transformation is ap-
plied to the whole image with fa11 � a22g; then we crop
the image part centered at ftx; tyg, with its size same as
the template; finally, histogram equalization is applied for
enhancement.
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Figure 2. The image database used in experi-
ment. The image size is 60x60.

3. Prior distribution p(�0) is Gaussian, whose mean and
covariance matrix are manually specified. Prior distribution
p(n0) is uniform on N , i.e.,

p(n0) = 1=N; n0 = 1; 2; : : : ; N: (13)

4. Statistical independence other than those established
in equation (5):

n0 ? �0: (14)

Obviously, this model is nonlinear by the nature of the
nonlinear transformation f(yt; �t), and non-Gaussian by
the nature of the observation noise vt. Therefore, we pro-
ceed to compute the joint posterior distribution � t(nt; �t)
using the CONDENSATION algorithm proposed in Section 3.
�t(nt) is simply the marginal distribution of �t(nt; �t).

5 Experiments and Discussions

In this section, we first present the experimental results
using these choices, followed by discussions.

5.1 Experimental Results

In our experiment, we captured video sequences with
subjects walking towards a camera in order to simulate typ-
ical scenarios like in visual surveillance. Using the termi-
nology of the FERET test [14], the gallery set as shown in
Fig. 2 contains 12 still images, one for each subject, and the
probe set contains 12 query video sequences, one for each
subject. Fig. 3 gives some example frames in one query.
Note the considerable change in scale.

Suppose the correct identity for Fig. 3 is c. Fig. 4
presents the posterior probability �t(nt) and the number
of samples sticking to the hypotheses. From Fig. 4, we
can easily observe that the posterior probability � t(nt = c)
increase as time proceeds, which is also evidenced by the
number of samples sticking to hypotheses. This is not sur-
prising at all. The evolution of �t(nt) characterizes a com-
petition for samples among the identities of humans. Since
it is assumed that the identity keeps unchanged over time,
we accumulate evidence in a recursive manner such that

Figure 3. Example frames in one query. The
image size is 320x240 while the actual face
size ranges approximately from 20x20 in the
first frame to 60x60 in the last frame.

more and more samples contribute to the identity with in-
creasing confidence. Finally, �t(nt) becomes degenerate in
this identity. For an analytical derivation of the evolution of
�t(nt), refer to [17].

To capture the evolution of �t(nt), we use the notion of
entropy [5]. Given a conditional PMF p(xjy) the condi-
tional entropy is defined as:

H(xjy) = �
X
x;y

p(x; y) log2 p(xjy)

= �
X
y

p(y)
X
x

p(xjy) log2 p(xjy): (15)

In the context of this problem, conditional entropy
H(ntjy0:t) captures the evolving uncertainty of the iden-
tity variable given observations y0:t. However, the knowl-
edge of p(y0:t) is needed to compute H(ntjy0:t). We sim-
ply assume that it is degenerate in the actual observations
~y0:t since we observe only this particular sequence, i.e.,
p(y0:t) = Æ(y0:t � ~y0:t). Now,

H(ntjy0:t) = �
X
nt2N

p(ntj~y0:t) log2 p(ntj~y0:t): (16)

It is well known that among all distributions taking values
on f1; : : : ; Ng, the uniform distribution yields a maximum
of log2N and the degenerate case yields the minimum of 0:

0 � H(ntjy0:t) � log2N (17)

Fig. 5 plots the conditional entropy H(ntjy0:n) versus time
t. As expected, H(ntjy0:n) starts from log2(12) = 3:59,
decreases at time proceeds, and finally reaches 0.
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Figure 4. Left: posterior probability p(ntjy0:t)
against t. Right: number of samples sticking
to hypotheses against t.
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Figure 5. Left: conditional entropy H(ntjy0:t)
against t. Right: MAP estimate of a11 against
t.

Fig. 5 also shows the MAP estimate of the scale pa-
rameter a11 against frame index t. The scale increases as
time proceeds, which matches the scenario where a subject
is walking towards a camera. In Fig. 3, the tracked parame-
ter is superposed on the image using a bounding box.

Table 1 summarizes the average recognition perfor-
mance and computational time obtained for this database.
100% recognition is reached possibly due to the small size
of this database. However, this algorithm is not so efficient
in terms of computational time. Note that this experiment is
implemented in C++ on a PC with P-II450 CPU and 512M
RAM and the number of motion samples J is chosen to be
200.

Recognition Rate 100%
Time per Frame 16s

Table 1. A summary of the algorithm.

5.2 Discussions and Future Work

The following issues are worthy of investigation in fu-
ture.

1. Modeling geometric transform as affine. Affine trans-
form is a good approximation as long as there is no out-of-

plane motion. The scenario with a subject walking towards
a camera roughly satisfies this. Also histogram equaliza-
tion is a typical but a coarse method to deal with changing
illumination.

2. Choice of constant-velocity dynamic model. Given
the scenario that the subject is walking towards the cam-
era, the scale increases with time. However, under perspec-
tive projection, this increase is no longer linear, causing the
constant-velocity model to be not optimal. However, exper-
imental results show that as long as samples of � can cover
the motion, this model can be applied for simplicity. One
future work is to train the dynamical model by examples
beforehand or by sample trajectories formed by the compu-
tations up to present.

3. Choice of likelihood distribution p(ytjnt; �t). In gen-
eral, p(ytjnt; �t) is a function of kvtk = kf(yt; �t)� Intk.
The smaller kvtk is, the higher the likelihood p(ytjnt; �t)
and higher the posterior p(ntjy0:t). In this sense, an ac-
curate solution to this problem is determined by the basic
problem: how can we find an efficient distance metric?

Gaussian distribution is widely used as a noise model,
accounting for sensor noise, digitization noise, etc. How-
ever, given the observation equation: v t = f(yt; �t) � Int ,
the dominant part of vt becomes the high-frequency resid-
ual if �t is not proper, and it is well known that high-
frequency residual of natural images is more Laplacian-
like. The ’truncated’ Laplacian is used to give a ’surviving’
chance for samples counting for abrupt motion changes. In
this framework, we can easily incorporate image represen-
tations other than intensity values. We are now exploring
features like PCA, and LDA, and their corresponding ob-
servation noise models.

4. Computational load. The proposed algorithm is not
computationally efficient. Two important numbers affect-
ing the computation are the number of motion samples J ,
and the size of database N . The actual sample number
M = J � N . (i) The choice of J is an open question in
the statistics literature. In general, bigger J produces more
accurate results. (ii) The choice of N depends on applica-
tions. Since a small database is used in this experiment, it
is not a big issue here. An efficient algorithm without com-
promising the accuracy has been designed [17].

5. Co-influence of tracking and recognition. Since the
joint posterior distribution is computed each time, the co-
influence is obvious. If tracking fails, recognition is mean-
ingless because we are not recognizing the face any more.
If recognition is poor, for instance, some background part in
the video may be more favored than the face part according
to the distance measure; tracking will then stick to the back-
ground. We are now developing an algorithm which clev-
erly splits the tracking and recognition tasks, but still uses
the idea of propagation of posterior probability for recogni-
tion.
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6. Now we highlight the differences from Li and Chel-
lappa’s approach [11]. (i) Problem Formulation. In [11],
basically only the tracking state vector is parameterized in
the state-space model. The identity is involved only in the
initialization step to rectify the template onto the first frame
of the sequence. However, in our approach both tracking
state vector and identity variables are parameterized in the
state-space model, which offers one more degree of free-
dom and leads to a different approach for deriving the so-
lution. (ii) Solution to the problem. The SIS technique is
applied in both approaches to numerically approximate the
posterior probability given the observation. Again in [11],
it is the posterior probability of the state vector, and the
verification probability is estimated by marginalizing over
a proper region of the state space redefined at each time in-
stance. However, we always compute the joint density, i.e.,
the posterior probability of the state vector and the identity
variable. The posterior probability of the identity variable
is just a free estimate by marginalizing over the state vector.
(iii) Performance. Notice that there is no time propagation
of verification probability in [11] while we always propa-
gate the joint density. One consequence is that we guaran-
tee that

P
nt2N

�t(nt) = 1, but there is no such guarantee
in [11]. Their approach in some sense is more like a batch
method, while ours is truly recursive. Another important
consequence is that in our approach the degeneracy in the
correct identity eventually indicates an immediate decision
while no such decision could be readily made from the veri-
fication probability in [11]. In addition, in terms of tracking
accuracy, if the wrong template is rectified on the first frame
in the initialization step, the tracking is more likely to be ab-
sorbed to the noisy background, while our approach is more
robust since we consider all templates at the same time.

6 Conclusion

A time series state space model is proposed in this pa-
per to solve the two tasks of tracking and recognition. This
probabilistic framework, which overcomes many difficul-
ties arising in conventional FR approaches using video,
is registration-free and poses no need for selecting good
frames. More importantly, temporal information is ele-
gantly exploited for a final decision.

However, this model is nonlinear and non-Gaussian,
leading to the possibility of an analytic solution being not
available. An extension of CONDENSATION [8] is applied to
provide a numerical solution. It turns out that an immedi-
ate recognition decision can be made in our framework due
to the degeneracy of the posterior probability of the iden-
tity variable. The conditional entropy can also be used as a
good indication for convergence.
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