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Abstract

Human gait is a spatio-temporal phenomenon and typifies
the motion characteristics of an individual. The gait of a
person is easily recognizable when extracted from a side-
view of the person. Accordingly, gait-recognition algo-
rithms work best when presented with images where the per-
son walks parallel to the camera (i.e. the image plane).
However, it is not realistic to expect that this assumption
will be valid in most real-life scenarios. Hence it is impor-
tant to develop methods whereby the side-view can be gen-
erated from any other arbitrary view in a simple, yet accu-
rate, manner. That is the main theme of this paper. We show
that if the person is far enough from the camera, it is possi-
ble to synthesize a side view (referred to as canonical view)
from any other arbitrary view using a single camera. Two
methods are proposed for doing this: i) by using the per-
spective projection model, and ii) by using the optical flow
based structure from motion equations. A simple camera
calibration scheme for this method is also proposed. Exam-
ples of synthesized views are presented. Preliminary testing
with gait recognition algorithms gives encouraging results.
A by-product of this method is a simple algorithm for syn-
thesizing novel views of a planar scene.

1 Introduction

Human identification forms an important component of vi-
sual surveillance. In many such applications established
non-invasive biometrics such as face or iris may not be
available at sufficient resolution to be used for recognition.
A biometric that can address some of these shortcomings
is ”gait”, which is motivated by the fact that humans ex-
hibit the capability of recognizing people even from impov-
erished displays of gait [1], indicating the presence of iden-
tity information. Gait can be detected and measured even in
low resolution video and can also be used with IR imagery
[2, 3, 4, 5]. The gait of a person is best reflected when he/she
presents a side view (referred to in this paper as a canoni-
cal view) to the camera. Hence, most gait recognition algo-
rithms rely on the availability of the side view of the sub-

ject. The situation is analogous to face recognition where it
is useful to have frontal views of the person’s face.

In realistic surveillance scenarios, however, it is unrea-
sonable to assume that a subject would always present a
side-view to the camera and hence, gait recognition algo-
rithms need to work in a situation where the person walks
at an arbitrary angle to the camera.There are two effects of
a change in viewing direction. One is simply the foreshort-
ening or lengthening that occurs as the person walks away
or towards the camera. The second is the change in the ap-
parent stride length. The most general solution to this prob-
lem would involve estimating a 3D model of the person from
which the required canonical view can be generated. This
problem requires the solution of the structure from motion
(SfM) or stereo reconstruction problems [6, 7], which are
known to be hard. To circumvent the problems associated
with the estimation of 3D models, several approaches have
been proposed for the gait recognition problem. Bobick and
Johnson [8] use linear regression to map static parameters
across views. In [9], Shakhnarovich et al. compute an im-
age based visual hull from a set of monocular views which
is then used to render virtual views for tracking and recog-
nition. In this paper, we propose an alternative approach
that can work with only a single camera and can synthesize
canonical views of high quality in a way that uses the 3D
structure only implicitly. These synthesized views can then
be used for gait recognition. The order of computation is���������

, where
�

and
�

are the dimensions of the bounding
box around the person.

Consider a person walking along a straight line which
subtends an angle 	 with the image plane (AC in Figure 1).
If the distance, 
�� , of the person from the camera is much
larger than the width, �
 , of the person, then it is reason-
able to replace the scaling factor ���������� for perspective pro-

jection by an average scaling factor �� � . In other words, for
objects far enough from the camera, we can approximate the
actual 3D object as being represented by a planar object. As-
sume that we are given a video of a person walking at a fixed
angle 	 (Figure 1). We show that by tracking the direction of
motion, � , in the video sequence, we can accurately estimate
the angle 	 in the 3D world. This can be done is two ways: a)
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Figure 1: Imaging Geometry

by using the perspective projection matrix, or b) by using the
optical flow based SfM equations. We also show that a sim-
ple, yet precise, camera calibration scheme can be designed
for this problem. Under the assumption of planarity, using
the angle 	 and the calibration parameters, we can synthesize
side-views or canonical views of the person, which can then
be passed on to the gait recognition algorithms. Since the
planar approximation is reasonable for many surveillance
scenarios where the distance between the camera and people
is large, this is a practical approach for synthesizing canon-
ical views required by many gait recognition algorithms. A
by-product of the above method is a simple algorithm to syn-
thesize novel views of a planar scene.

2 Theory

2.1 Imaging Geometry

The imaging setup is shown in Figure 1. The coordinate
frame is attached rigidly to a camera with the origin at the
center of perspective projection and the � -axis perpendicu-
lar to the image plane. Assume that the person walks with
a translational velocity �������! �"$#�"$�!%$&(' along the line AC.
The line AB is parallel to the image plane XY and this is the
direction of the canonical view which needs to be synthe-
sized. The angle between the straight line AB and AC, i.e.	 , represents a rotation about the vertical axis we hence we
shall call this the azimuth angle. We will use the notation
that � )*",+-"$
.& denotes the coordinates of a point in 3D and� /0"$1!& its projection on the image plane.

2.2 Estimating the Azimuth Angle from
Video Sequence

We present two ways of estimating the angle 	 from the
video sequence.

Perspective Projection Approach

We assume that the person is walking along the straight line
AC in Figure 1. Under exact perspective projection, straight
lines map to straight lines. Thus the direction of motion
in the 3D world corresponds to a straight line in the im-
age plane, which can be estimated by tracking some points
which move approximately rigidly as the person walks.
Consider the equation of the 3D line which is at a height 2
from the ground plane and parallel to it, i.e.
3�5476 �0� 	 � )�89
 � "�+:�;2=< (1)

Under perspective projection this line transforms to (see Ap-
pendix) 1>� 2�?
 ��@ 2 476 �0� 	 �
 � /0" (2)

where /��A? B� � � 'DC$EGFIHKJ B , 1L�A? M� � � 'DC$EGFIHKJ B and ? denotes
the focal length of the camera. Thus if the slope of the line
in the image plane, viz. 476 �0� � � , is known, then given NO�@ P��� , the azimuth angle 	 can be computed as476 �0� 	 � � QN 476 �0� � � < (3)N can be obtained as a part of the calibration procedure.
Note that using the orthographic projection model will result
in giving a straight line 1��32 which does not reflect the az-
imuth angle variation in the image plane. Thus our method
will not work under orthographic projection assumptions.

Optical Flow Based SfM Approach

Assume that the motion between two consecutive frames in
the video sequence is small. Using the optical flow based
SfM equations, let R � /D"$1 � and S � /D"$1 � represent the horizon-
tal and vertical velocity fields of a point

� /0"K1 � in the image
plane. Since we consider straight line motion along AC, R
and S are related to the 3D object motion and scene depth
by [10] R � /0"$1 � � � / @ ?T/ � ��U=� /0"K1 � (4)S � /0"$1 � � 1 U=� /0"K1 � " (5)

where
U�� /D"$1 � � � %WV � � /0"$1 � is the scaled inverse scene

depth and / � �YXLZ\[ � 	 � �^]$_]a` "K1 � � ]cb]d` is the focus of
expansion (FOE). When � % �e# but �  �f�g# , we see that	h�;# , i.e. the canonical direction of walk, AB. Also, in this
case S � /0"K1 � �:# . For the case when the person walks at an
azimuth angle 	 f�A# , dividing (4) by (5) we obtain,XLZ\[ � � � /0"$1 ��� �;i � /D"$1 � @ �j� 1�"$? � XLZ\[ � 	 � " (6)

where XLZ\[ � � � /0"$1 ��� �lk F  nm o Jp F  qm o J . For a fixed point in the im-
age (e.g. centroid of the head) in the (6), we haveXLZ\[ � � � �AX @ r XLZ\[ � 	 � < (7)
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i � /0"K1 � and
�j� /0"K1 � can be obtained from calibration data.

By considering one particular point in a number of images,
we can robustly estimate 	 from � .

Equation (3) was derived under the perspective projec-
tion model, while equation (7) was derived using perspec-
tive projection and optical flow. Hence the difference in the
two equations. However, both give numerically close re-
sults as explained in Section 3.

2.3 Coordinate Transformation to Canonical
View

Having obtained the angle 	 , we need to synthesize the
canonical view. Let 
 denote the distance of the object from
the image plane. If the dimensions of the object are small
compared to 
 , then the variation in 	 , st	7uA# . This essen-
tially corresponds to assuming a planar approximation to the
object. Let � ) H "�+ H "$
 H &wv denote the coordinates of any point
on the person who is walking at an angle 	yxz# to the image
plane (as shown in the Figure 1). Then{| )}�+~�
�� �� �A� � 	 ��� {| ) H+ H
 H

�� " (8)

where � � 	 � � {| XLZ�� � 	 � #���� �0� 	 �# Q #@ ��� �0� 	 � #LXyZ�� � 	 �
�� < (9)

Denoting the corresponding image plane coordinates as� / H "$1 H &�v and ��/ � "K1 � &�v (for 	���# ) and using the perspective
transformation, we can obtain the equations for ��/ � "$1 � &wv as
(see Appendix)/ � � ? / H XLZ�� � 	 � @ ?���� �0� 	 �@ / H ��� �0� 	 � 89?TXLZ�� � 	 �1���� ? 1 H@ / H ��� �0� 	 � 89?TXLZ�� � 	 �=" (10)

where /��;? ) � and 1��;? + � <
Equation (10) is particularly attractive since it does not in-
volve the 3D depth; rather it is a direct transformation of
the 2D image plane coordinates in the non-canonical view
to get the image plane coordinates in the canonical one.
Thus knowing the azimuth angle 	 we can obtain a synthetic
canonical view using (10) and a suitable texture mapping
rule.

Synthesis of Arbitrary Planar Views

The extension of the above method to synthesize arbitrary
planar views is straight-forward. Suppose we are given a

video sequence of a person walking at an angle 	�� . This can
be estimated from the direction of motion of the person in
the video sequence (as explained above). Once this is done
we can synthesize the view at an angle 	!� by applying the
transformation of (10) with 	��l	c� @ 	 � . Thus, for planar
scenes, we are able to generate synthetic views purely from
the video data. This is important for many applications other
than gait recognition, such as multimedia.

2.4 Application to Gait Recognition

Approaches in computer vision to the gait recognition prob-
lem can be broadly classified as being either model-based
or model-free. Methods which assume a priori models [3,
11, 12] match the 2-D image sequences to the model data.
In [3], the authors proposed a method where several ellipses
are fitted to different parts of the binarized silhouette of the
person and the parameters of these ellipses such as loca-
tion of its centroid, eccentricity etc. are used as a feature to
represent the gait of a person. Recognition is achieved by
template matching. Model-free methods [4] establish cor-
respondence between successive frames based upon the pre-
diction or estimation of features related to position, velocity,
shape, texture and color. In [2, 13], the sum of the white pix-
els along each row of the boxed silhouette image, referred to
as the width vector, has been used as a feature. We now show
that it is possible to obtain the transformed width vector in
the canonical view directly from images obtained at an ar-
bitrary view. Let 4l����/ H "$1 H &�����/ � "K1 � & as represented in
(10) and � � /0"K1 � denote the image intensity at

� /D"$1 � . Also,
let �� H represent the synthesized image at angle 	 and �� H � 1 �
the width vector for a particular row, 1 , in the image. Given
the azimuth angle we can synthesize the width vector in the
canonical view as�� � � 1 � �� �  � �� � � / � "$1 � �� � c�!� F  c�!m o$� JI��'��t��F  � m o � J � � / H "$1 H �,� " (11)

(12)

where
� � /D"$1 � � Q

if � � /0"$1 � f�l# and
� � /0"K1 � �l# , other-

wise.

3 Obtaining Camera Calibration Pa-
rameters

Using Equations (3), (6) and (10) requires a knowledge of
the parameters ? , N , X and

r
, which are essentially the

camera calibration parameters for this problem. In order to
compute ? , we used a calibration grid marked with 20 points
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Figure 3: Tracked points in the video sequence and the best fit
straight lines.

as shown in Figure 2. We placed the grid at 3 different az-
imuth angles 	�� Qc� "K�n#�",  � and obtained the point corre-
spondences by hand. The points are related by (10). We rep-
resent the three angles by 	,¡y¢¤£ Qc� "K�n#�",  �¦¥ and the coordi-

nates of the � th point by ��/�§H©¨ "$1�§H©¨ &wv and ��/�§� "K1ª§� &wv . Using these
points we form a cost function � � ? � as shown in Equation
(13). We solve this nonlinear regression using the Gauss-
Newton method to obtain ?T«h� argmin � � � ? � , where�*� � § m H¬¨

 / § � @ ? /�§H ¨ XLZ�� � 	,¡ � @ ?T��� �0� 	,¡ �?�XLZ�� � 	�¡ � 8®/ § H¬¨ ��� �0� 	,¡ ��¯ �8  1 §� @ ? 1ª§H ¨@ / § H©¨ ��� �0� 	,¡ � 8®?�XLZ�� � 	,¡ �ª¯ � < (13)

Next, we consider the estimation of N , X and
r

. In or-
der to do this, we captured videos of a person walking at	°�±#�" Qc� "$�q#�"�  � "�²n# . We tracked the position of a rigid
point on the person followed by a median filtering of the tra-
jectory. The resulting tracks are shown for the different 	 s
in the Figure (3). To each of these tracks we fit a line us-
ing the least squares criterion. These are the solid lines in
Figure (3), with slopes 476 �0� � � 	 ��� . The top line is the case
when 	��³# . The lines for 	�� Q!�

is the one immediately
below this line and so on. As may be expected, larger az-
imuth angles lead to larger image plane angles. The upper
right corner where the lines intersect approximately, corre-
sponds to the point from where the subjects start walking.
These straight lines are the projections of the straight lines
(one for each angle) traced out by the motion of the tracked
rigid point in the 3D world. For the calibration procedure,
we know the angle 	 which traces out the straight line at the
angle � . Given the corresponding values of � and 	 , we can
estimate N from (3).

Similarly, we can obtain i � /0"K1 � and
�j� /0"K1 � in (6). Let X

and
r

be the corresponding representations for a particular
point

� /0"K1 � . The direction of motion of this line, XLZ\[ � � � �k p , is constant, since it moves along a straight line. Hence
a robust estimate of � can be obtained by considering the
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Figure 4: Calibration curves for ´¶µ\·,¸�¹Wº vs. ´¶µa·,¸¼»�º . The dots
represent the true values, the solid line represents the calibration
curve using (3) and the dashed and dotted line represents the cali-
bration curve using ((7).

motion of this point over a number of frames of the video
sequence, i.e. the slope of the straight lines in Figure (3).
Thus X and

r
can be determined from (7) by considering

all the corresponding values of � and 	 .
Figure 4 plots the true values of � and 	 , as well as the

two regression lines (3) and (7) obtained from the calibration
procedure. Even though (3) and (7) were derived under dif-
ferent physical models, the straight lines in both the cases are
good approximations of the true data. The main source of er-
ror is due to the assumption of straight line motion of a point,
which is never precisely true in practice. Also, the effect of
changing the image coordinate system can be taken into ac-
count easily by making the appropriate modifications in the
perspective projection equations [6], at the cost of increas-
ing the number of intrinsic camera parameters that need to
be estimated during the calibration procedure.

Given a test video, we can estimate the value of � in a
way similar to that shown in Figure 3. Thereafter, the value
of 	 can be read off directly from the calibration lines in Fig-
ure 4. The choice of which of the two lines should be used
is left to the discretion of the user, who can determine that
depending upon the validity of the assumptions in the par-
ticular case.

4 Experimental Results

In this section, we present results of our method for synthe-
sizing canonical views of people from videos of them walk-
ing along arbitrary directions. We use the canonical views
for gait recognition. The experiments are on a small number
of people and conducted with the motivation of presenting a
proof of concept for our algorithm. Detailed gait recognition
experiments is the focus of future work.

Our database consists of 12 people, who walk along
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Figure 2: Calibration grid placed at (a) 0 (b) 15 (c) 30 and (d) 45 degrees.

straight lines at different values of azimuth angle 	½�#�" Qc� "$�q#�"�  � and ²n# degrees. For the initial calibration, we
consider one person walking at all the above angles. Back-
ground subtraction as discussed in [14] is first applied to all
the image sequences, one for each angle. To remove spu-
rious noise, a standard �¿¾z� low-pass filter is applied to
the resultant motion image. A bounding box is then placed
around the part of the motion image that maximally contains
the moving person. The size of the box is chosen to accom-
modate the extreme cases of individuals in the database as
regards height and girth. Further operations are carried out
on this ‘box’. The upper left corner of the box was tracked in
the video. This is approximately the same as tracking a rigid
point on the persons body. The angle � is obtained from the
median filtered tracks in the image plane. Since 	 is known
for the calibration procedure, N , X and

r
were computed

using the method described in Section 3.

For the video of an unknown person in the database the
above image processing operations are repeated to compute
the image plane angle � . Using the calibration line shown
in Figure 4, the azimuth angle 	 was obtained. Using this
value of 	 and the value of ? obtained as a part of the cal-
ibration procedure, the view of the person was synthesized
using the (10). Some of the synthesis results are shown in
Figure 5, along with the images from the original video se-
quences. Note that the height of the synthesized silhouette is
almost constant similar to the true zero azimuth case shown
in Figure 5(a). It is also instructive to look at the width pro-
file (defined as the number of pixels in each row between the
extremities of the binarized silhouette) of one person plot-
ted as a function of time as shown in Figure 6. The lower
halves of these width plots correspond to the leg regions. In
Figure 6 both the foreshortening and the effect of viewing
direction on the leg-swings can be observed. In particular
it can be seen that the leg swing as observed from a non-
canonical view is smaller than what it would be from the ex-
act side-view. Usage of such an unnormalized gait sequence
for recognition will give poor results. Our method provides
a systematic way of handling both these effects as can be
seen from the width vector of the synthesized images in Fig-
ures 6(c) and (d).

For the case when 	��À  � we find that in the torso re-
gion, the reconstructed silhouette is broader than the orig-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: (a) represents different stances of a person walking par-
allel to the camera; (b) (d) and (f) represent different stances of a
person walking at angles 15, 30 and 45 degrees to the camera; (c)
(e) and (g) represent side-views synthesized from original videos
where the person walks at angles of 15, 30 and 45 degrees to the
camera.
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Figure 6: Width profile as a function of time for (a) Canonical View ( ¹7Á9Â );(b) Unnormalized sequence for ¹�Á¿ÃWÄ ;(c) and (d) Synthesized
non-canonical Views for ¹7Á¤Å!Â and ¹7Á¿ÃWÄ respectively.

inal. The reason for this is the limitation of the planarity
assumption for the torso region. For non-canonical views,
parts of the torso unseen in the canonical view, appear. To
appreciate this better, consider that we approximate the torso
as a rectangular block. In the canonical view, just one face
of this block is visible. For non-canonical views parts of the
other faces of this block are visible too. The synthesis al-
gorithm, which interprets this as a plane, renders a broader
reproduction of the torso part. Notice however that this ef-
fect is somewhat lesser in the leg portions of the silhou-
ette. As can be seen from the Figure 6, the lower parts are
clearly distinguishable and similar for the different angles,
though the upper halves of the plots become more and more
noisy as the value of 	 increases. In order to study the per-
formance of gait recognition on the synthesized images we
used a rather simple variant of the baseline gait recognition
algorithm [15]. Our gallery consists of people walking at	Æ�Ç# , i.e. the canonical view. The probes are video se-
quences where people walk at arbitrary angles 	 . We take È
contiguous boxed images of a person � in the gallery when
he/she is walking at an azimuth 	A�Y# . For every image
of the probe É transformed to the zero azimuth from the az-
imuth 	a , we compute the similarity matrix ��H _ �3�cH _ � ��"¬É � ,
where � H _ � �,"¬É � �ËÊ ¨�P � � maxcorr

�©Ì H _ m ¡P "©Í §Î � " (14)

and
Ì H _ m ¡P refers to the 2 th image in the sequence synthe-

sized from 	\ for the probe É . Í>§Î �Ï£cÐ7§ � " �c�!� "�ÐÑ§Î ¥ is the
set of È contiguous images for the zero azimuth for gallery
person � , and

maxcorr
�©Ì H _ m ¡P "©Í § Î � �3Ò�Ó!ÔÕ È*Ö ��� Ð7§Õq× Ì H _ m ¡P �È*Ö ��� Ð § ÕqØ Ì H _ m ¡P � <

Besides taking the usual binary correlation in (14), we also
computed the similarity matrices for just the lower half of
the bounding box. This is approximately equivalent to con-
sidering just the leg portion of the body. This is motivated
by the fact that the planarity assumption is more strictly ad-
hered to in the leg portion than in the torso. Gait recognition
performance can be improved further by fusing other static
cues about the person, such as height. We fuse height infor-
mation with the leg dynamics by scaling each entry � � ��"¬É �
of the similarity matrix by the corresponding height ratio,
max

�GÙ F(§�JÙ F ¡ J "$Ú @ Ù Fw§wJÙ F ¡ J � .The similarity matrices, yield as a by-product a quantita-
tive assessment of the quality of the synthesized images asÛ H � QÜÞÝ� §�� � � H � �,"K� � " (15)

for each 	h�;	  and
Ü

persons. This is plotted as a function
of 	 in Figure (7). The cumulative match characteristics [15]
are shown in Figure (9) for the full body, leg only and leg and
height fusion cases. The rise of the solid curves (represent-
ing the leg dynamics, with or without height fusion) is faster
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Figure 7: Quality degradation of the synthesized images as a func-
tion of angle.
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Figure 8: ROC curves for ¹�ÁzßdÄªà�ÅcÂ and ÃWÄ degrees for the case
of leg and height fusion.

than the dotted ones (representing full body). This means
that recognition performance is better when only the leg dy-
namics, instead of the whole body, is used. The reason for
this is the incorrect broadening of the torso region. The per-
formance in the case where height information is fused with
leg dynamics is even better. Interestingly, [15] notes that the
lower 20 % of the silhouette accounts for roughly 90% of
the recognition. Similarly [2] showed that the gait recogni-
tion in the case when the subject was carrying a ball, viz. no
upper body dynamics, the recognition rates were better. The
fact that the gait recognition results are encouraging upto an-
gles of   � degrees allows us to hypothesize that it is possible
to do reasonable human identification using gait with only
two cameras (installed perpendicular to each other).

In order to study the efficiency of gait recognition with
synthesized views, we compute the Receiver Operating
Characteristic (ROC), which is a plot of the probability of
detection (i.e. correct recognition), R�á , vs. the probability
of a false alarm (i.e. false acceptance), R�â , for azimuth an-
gles 	h� Q!� "$�q# and   � degrees. The plots are shown in Fig-
ure 8. The performance degradation with increasing 	 can
be understood from these plots. The ROC curves indicate
that the proper detection threshold should vary with 	 , so
as to obtain a performance characteristic with small R â and
large R á .

5 Conclusion and Future Work

In this paper, we have proposed a method for synthesizing
arbitrary views of planar objects, and applying the synthe-
sized views for gait recognition whenpeople are walking at
any arbitrary angle to the camera. Our method used a per-
spective projection model and an optical flow based struc-
ture from motion model for estimating the azimuth angle of
the original view from monocular video data. Thereafter, a
video sequence at the new view was synthesized. The entire
process was done in 2D, though 3D structure of the scene
played an implicit role. A simple, yet accurate, camera cal-
ibration procedure was also proposed. Examples of synthe-
sized views are presented. Preliminary results of gait recog-
nition on a database of people was reported using these syn-
thesized views. Development of appropriate gait recogni-
tion algorithms for people walking at arbitrary angles is one
of our future research directions. Though the method has
been explained from the motivation of the gait recognition
problem, it has important applications in other areas too, like
multimedia and video processing. That, too, forms a part of
our future research into this problem.

Appendix

Proof of Equation (2):

Consider Equation (1) and the perspective projection model.
Then, /��A? ) 
 �A? )
 � 8¿476 �0� 	 � ) " (16)1L�A? + 
 �A? +
��.8¤476 �0� 	 � ) < (17)

Dividing Equation (17) by (16) we get (except for the few
degenerate points where the denominator is zero),1/ � 2) < (18)

Now consider Equation (16):
ã�c/L89476 �0� 	 � )*/ä�A?�)*"
i.e. 
��!/�� @ � 476 �0� 	 � / @ ? � )*"
i.e.  B � �nå 'DC$EtF�H$J  � � < (19)

Substituting Equation (19) in (18), we get (2).

Proof of Equation (10):

Using Equations (8) and (9), we get
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Figure 9: Cumulative Match Characteristics for Synthesized images (solid line represents the full body used for matching, dash-dotted line
represents the case where only the leg is used for matching) for (a) ¹7Á9ßdÄ (b) ¹7Á¤Å!Â and (c) ¹7ÁæÃWÄ .

)}��� ) H XLZ�� � 	 � 89
 H ��� �0� 	 � (20)+ � � + H (21)
 � � @ ) H ��� �0� 	 � 8�
 H XLZ�� � 	 � < (22)

Under perspective projection,/ � �;? ) �
ã� "$1 � �A? + �
�� (23)/ H �;? ) H
 H "K1 H �A? + H
 H < (24)

Substituting from (20), (21) and (22) in (23), we get/ � �3? ) H XLZ�� � 	 � 89
 H ��� �0� 	 �@ ) H ��� �0� 	 � 8�
 H XyZ�� � 	 �T" (25)1 � �5? + H@ ) H ��� �0� 	 � 8�
 H XLZ�� � 	 � < (26)

Substituting for ) H and + H from (24) yields Equation(10).
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