
An Architectural Level Design Methodology
for Embedded Face Detection

V. Kianzad1∗, S. Saha1∗, J. Schlessman2, G. Aggarwal1, S. S. Bhattacharyya1, W. Wolf2
and R. Chellappa1

1ECE Dept. and Institute for Advanced Computer Studies, Univ. of Maryland,College Park, MD
2Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ

{vida, ssaha, gaurav, ssb, chella}@umd.edu, {jschless, wolf}@princeton.edu

ABSTRACT
Face detection and recognition research has attracted great
attention in recent years. Automatic face detection has great
potential in a large array of application areas, including
banking and security system access control, video surveil-
lance, and multimedia information retrieval. In this paper,
we discuss an architectural level design methodology for im-
plementation of an embedded face detection system on a
reconfigurable system on chip. We present models for per-
formance estimation and validate these models with exper-
imental values obtained from implementing our system on
an FPGA platform. This modeling approach is shown to be
efficient, accurate, and intuitive for designers to work with.
Using this approach, we present several design options that
trade-off various architectural features.

Categories and Subject Descriptors
C.3 [Real-time embedded systems]

General Terms
Design

Keywords
Design space exploration, face detection, reconfigurable plat-
forms, system-level models.

1. INTRODUCTION
In this paper, we present our study of design, model-

ing, architecture exploration, and synthesis of a face detec-
tion system. Face detection pertains to the discernment
of the existence of human faces within an image or video
sequence. This operation holds interest in fields such as

∗These authors made equal contribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05,Sept. 19–21, 2005, Jersey City, New Jersey, USA
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

surveillance, video archiving, and tracking, amongst oth-
ers. Furthermore, many of the aforementioned fields have
shown an increased focus on mobile and outdoor applica-
tions. This mandates consideration of power consumption,
memory size, and area. Face detection is not a simple prob-
lem, however. While a significant body of work exists for
elegant solutions to this problem, these approaches require
computational power well beyond that deemed acceptable
for mobile systems. It is also important to note that hard-
ware solutions, while pursued, tend to consume significant
system resources for what is in many cases a subsystem of
a larger, more complex system.

As history has shown, area minimization has been graced
by technology scaling. Unfortunately, however, the Inter-
national Technology Roadmap for Semiconductors predicts
a change in this trend. This prediction is coupled with an
expected increase in leakage power, simply for powering de-
vices. Intuitively, many of the application areas for face
detection require fairly constant operation, making reliance
upon device scaling questionable. In addition, these appli-
cations have an implicit and in many cases critical need for
real-time performance. The real-time realization of such ap-
plications can only be achieved by aggressive application of
parallel processing and pipelining as provided by multipro-
cessor systems. Such implementation involves the interac-
tion of several complex factors including scheduling, inter-
processor communication, synchronization, iterative execu-
tion and memory/buffer management. Addressing any one
of these factors in isolation is itself typically intractable in
any optimal sense.

With these issues in mind, we study in this work the de-
sign and synthesis of an embedded face detection system
for a class of reconfigurable system-on-chips. In addition to
providing design details and experimental results for a useful
family of face detection architectures, the following contri-
butions on design methodology emerge from our study.

• We develop a number of useful generalizations to the
synchronization graph performance analysis model [6].
First, we demonstrate the first formulation and use
of multirate synchronization graphs, which we show
to be useful for compactly representing repetitive pat-
terns in the execution of a multiprocessor system. Sec-
ond, we integrate aspects of ordered transaction exe-
cution [5] with more conventional, self-timed execu-
tion in a flexible and seamless way. This demonstrates
a new class of hybrid self-timed/ordered transaction
designs. Furthermore, it demonstrates that the syn-

Create Ellipse-
shape Masks

n
Image I Find correlation

between the image I d

and each mask j
Down-sampled

Image Id

Find the
max. correlation

value

Mark the outline
 of the detected face

in the image

Figure 1: The flow of face detection algorithm.

chronization graph modeling methodology can be used
to unify analysis across the entire spectrum of sys-
tems encompassing pure self-timed execution, pure or-
dered transaction execution, and the set of hybrid self-
timed/ordered transaction possibilities that exist be-
tween these extremes. Third, we show how our mul-
tirate synchronization graph approach, together with
hybrid self-timed/ordered transaction scheduling, can
be used to effectively design systems involving exten-
sive multi-dimensional processing (in our case, process-
ing of video frames). Previous development of syn-
chronization graph modeling has focused primarily on
single-dimensional signal processing systems.

• We then apply our generalized synchronous graph mod-
eling approach as a designer’s aid for architecture anal-
ysis and exploration. In contrast, previous develop-
ment of synchronous graphs has focused on their use as
an intermediate representation in automated tools [6]).

• We show how for application/domain-specific design,
the system designer can effectively use our new mod-
eling approach as a way to understand and explore
performance issues (regardless of whether the model is
supported by the synthesis tools employed). Our pa-
rameterized construction of the multirate synchroniza-
tion graph for the targeted class of application/architecture
mappings together with our analysis of cycles in this
parameterized synchronization graph concretely demon-
strates the steps that are needed for this type of design
methodology.

2. RELATED WORK
There is a vast expanse of work related to face detection,

with significant focus on accuracy at the expense of compu-
tational complexity [10][3]. This work, as mentioned, lends
itself well to software implementations on general purpose
processors, however, does not make embedded and mobile
implementations feasible. In recent years, more focus has
been placed on hardware implementations of face detection.
In addition, much of this work used a starting point of re-
configurable platforms for system implementation, similar
to the work presented in this paper, e.g. a face detection
system was implemented on a reconfigurable platform, with
area results requiring multiple FPGA boards [3]. An ASIC
implementation of a fairly complex face detection algorithm
was presented, with real-time frame rates possible. This
work, however, did not mention architectural exploration [8].
A framework for generalized object detection on a general
purpose embedded processor was presented, as well [9].

This body of work suffers from a distinct lack of focus on
design methodology and architectural exploration and there
is little work that treats the problem of face detection with
stringent attention to synchronization of data accesses and
transfers, as well as resource assignment and task schedul-
ing. Bridging this gap and facilitating more systematic cou-

Figure 2: Results of applying the face detection al-
gorithm to two images.

pling between face detection algorithms and their embedded
implementations are major objectives of this work.

3. FACE DETECTION ALGORITHM
Face detection research has been an active area of re-

search for the past few decades. There are several approaches
that make use of shape and/or intensity distribution on the
face. In this work, we use a shape-based approach as pro-
posed in [4]. A face is assumed to be an ellipse. This method
models the cross-section of the shape (ellipse) boundary
as a step function. Moon [4] proves that derivative of a
double exponential (DODE) function is the optimal one-
dimensional step edge operator, which minimizes both the
noise power and the mean squared error between the input
and the filter output. The operator for detecting faces is
derived by extending the DODE filter along the boundary
of the ellipse. The probability of the presence of a face at
a given position is estimated by accumulating the filter re-
sponses at the centroid of the ellipse. Quite clearly, this
approach of face detection seems like a natural extension of
the problem of edge detection at the pixel level to shape de-
tection at the contour level. Moon [4] even provides formu-
lations for propagation of the error by the shape geometry.
This way one can predict both the localization and detec-
tion performance of the algorithms and adjust parameters
according to the imaging conditions and performance speci-
fications. Figure 1 shows the complete flow of the employed
face detection algorithm. A few examples of detection out-
puts using the described approach are presented in Figure 2.

4. MODELING APPROACH
In this work, we build on the synchronization graph model

[6] to analyze and optimize multiprocessor implementation
issues of our system. This representation is based on itera-
tive synchronous dataflow (SDF) graphs [2]. A brief intro-
duction to these concepts is presented in this section.

In SDF, an application is represented as a directed graph
in which vertices (actors) represent computational tasks,
edges specify data dependencies, and the numbers of data
values (tokens) produced and consumed by each actor is
fixed. Delays on SDF edges represent initial tokens, and
specify dependencies between iterations of the actors in it-
erative execution. Mapping an SDF-based application to

A

B C

D E F

(a) Application Graph (b)Self-timed Schedule

PE1: B, D,E

PE2: A,C,E

D

B

F

C

A

E

(c) Synchronization Graph

Figure 3: An example of (a) an application graph,
(b) an associated self-timed schedule and (c) the
synchronization graph resulting from this schedule.

a multiprocessor architecture includes i) assignment of ac-
tors to processors, ii) ordering the actors that are assigned
to each processor, and iii) determining precisely when each
actor should commence execution. In this work, we focus
on the self-timed scheduling strategy and the closely-related
ordered transaction strategy [6]. In self-timed scheduling,
each processor executes the tasks assigned to it in a fixed
order that is specified at compile time. Before executing
an actor, a processor waits for the data needed by that ac-
tor to become available. Thus, processors are required to
perform run-time synchronization when they communicate
data. This provides robustness when the execution times
of tasks are not known precisely or when they may exhibit
occasional deviations from their compile-time estimates. It
also eliminates the need for global clocks that coordinates
all processors in lockstep.

The ordered transaction method is similar to the self-
timed method, but it also adds the constraint that a global,
linear ordering of the interprocessor communication opera-
tions (communication actors) is determined at compile time,
and enforced at run-time [5]. The linear ordering imposed
is called the transaction order of the associated multipro-
cessor implementation. Enforcing of the transaction order
eliminates the need for run-time synchronization and bus
arbitration, and also enhances predictability. The synchro-
nization graph GS [6], is used to model the self-timed execu-
tion of the given parallel schedule for an iterative dataflow
graph. Given a self-timed multiprocessor schedule for graph
G, we can derive Gs by instantiating a vertex for each task,
connecting an edge from each task to the task that succeeds
it on the same processor, and adding an edge that has unit
delay from the last task on each processor to the first task on
the same processor. Each edge (vj , vi) in Gs is called a syn-
chronization edge representing synchronization constraint

∀k, start(vi, k) ≥ end(vj , k − delay(vj , vi)), (1)

where start(v, k) and end(v, k) respectively represent the
time at which invocation k of actor v begins execution and
completes execution, and delay(e) represents the delay as-
sociated with edge e.

Once we construct Gs for a system, we use the maximum
cycle mean (MCM) of the graph for performance analysis.
The MCM is defined by

MCM(Gs) = max
cycleCinGs

{

∑
v∈C

t(v)

Delay(C)
}, (2)

where Delay(C) denotes the sum of the edge delays over
all edges in cycle C. The MCM is used in a wide variety of
analysis problems, and a variety of techniques have been de-
veloped for its efficient computation (e.g., see [1]). Examples
of an application graph, a corresponding self-timed schedule
and synchronization graph are illustrated in Figure 3.

E
X
T
E
R
N
A
L

M
E
M
O
R
Y

Processor
 Core

I-CACHE

D-CACHE

Configurable
 Logic

O
N
-
C
H
 I
P

M
E
M
O
R
Y

Figure 4: Target Architecture.

5. ARCHITECTURAL EXPLORATION

5.1 Target Architecture
The architecture we are targeting in this work is a recon-

figurable system on chip. Such a system has both hardware
and software resources and has potential for multiple pro-
cessor development. It also includes on-chip and off-chip
memory resources. The access to the off-chip memory is as-
sumed to be through a shared bus. The on-chip memory
access can be performed through a shared bus or via DMA.
An example of such a system is Xilinx’s Virtex II Pro. An
abstract version of such a system is presented in Figure 4.

5.2 Profiling
Software profiling is usually the first step to any perfor-

mance optimization approach. Profiling gives us information
about the run-time of different program modules and where
the most time is spent. Since we are targeting embedded
systems, we are concerned with several optimization met-
rics such as time and energy consumption and hence it is
important to identify the critical sections of the code that
can benefit from hardware implementation. In this work
we have used the FLAT profiler that provides loop/function
level information [7]. The FLAT profiler identifies the cor-
relation module that computes the correlation between the
mask and the image (see Figure 1) as the candidate core (a
core is defined the set of all loops whose execution is higher
than a threshold value) for optimization and mapping to
hardware. The output of FLAT is given in Table 1.

5.3 Base Model
Based on the results of profiling, we derived a system

model such that multiple processing elements (PE) can con-
currently execute multiple instances of the correlation func-
tion and thereby process masks simultaneously. This model
requires us to have multiple masks and copies of the frame
(for concurrent access) available on the chip, e.g 3 PEs re-
quire 3 frame copies present on chip. This increases the rate
of memory accesses and hence power consumption, to min-
imize that we process the image one stripe at a time (we
define a stripe to be the minimum size of the image that
is processed in one pass), i.e. we run our masks set on a
given stripe of the image and find the maximum correla-
tion value and repeat the process for the next stripe, and
continue until we have exhausted all the stripes and hence
the image. For a set of N masks and n processing elements
(PEs) (i.e. n masks can be processed simultaneously) it will
take m(= dN

n
e) processing passes to cover all masks for a

single stripe.
Figure 5 shows the implementation, transaction/execution

order and synchronization model of our system. In this Fig-

Table 1: FLAT’s output for the Face Detection Algorithm.
Loop Name Frequency Loop Size Total Ins. (106) % Exec
Program 1 96912 87053 100.0

mask-correlation 56392 600 83978 96.47

PEi,1 ... PEi,nPEi,2

1

m m

1

REPEAT

MRi,1

MRi,2

MRi,n

..
.

Mask Transfer

Controller (MTC)

Mask Synch

Row Transfer

Controller (RTC)
IRnIR1 IR2

...

DIS

PESynchi

Figure 5: An SDF representation of the mapping of
the algorithm onto the targeted architecture along
with the associated synchronization structure.

ure, the MRi,j actors represent the reading of mask j from
the mask set i by processing element j, where i varies from
1 to m and j varies from 1 to n. This process takes t(MR)
time units. The masks are stored in the external memory
and the Mask Transfer Controller (MTC), controls the read-
ing to the dedicated Block RAMs (BRAMs) for each PE.
The MTC conducts mask transfers one-at-a-time according
to a repeating, pre-determined sequence in a fashion anal-
ogous to that of the ordered transaction strategy. Unlike
conventional ordered transaction implementation, however,
a transaction ordering approach is not used for all dataflow
communications in the enclosing system. Each PEi,j actor
represents the processing of the ith mask by PEj , which
takes t(PE) time units. The DIS actor or the Downsam-
pled Image Source represents the downsampling of an im-
age stripe whose execution time is t(DIS). The IR actor
represents the reading of the downsampled stripe into the
BRAMs one row at a time (execution time t(IR)). The RE-
PEAT actor is a conceptual vertex that ensures that exactly
m mask sets are processed for each new row of image data.
No data actually needs to be replicated by the REPEAT ac-
tor; the required functionality can be achieved through sim-
ple, low-overhead synchronization and buffer management
methods. The PESynchi represents the synchronization
unit that synchronizes the start of the ith iteration of the
PEs with the reading of mask set i + 1. This unit receives
data from the PEs and the REPEAT actor. The messages
from the PEs confirm that they have completed the process-
ing of one mask. These messages are sent at the end of each
iteration. The production rate of m and consumption rate
of 1 (shown on the (REPEAT, PESynchi) edge) indicates
that the PEsynch unit has to execute m times before the
REPEAT actor is invoked again. The Mask Synch actor
is again a conceptual actor and is not needed for any func-
tional purpose. It represents the synchronization between
m executions of the PE Synch actor and the corresponding

PE1,1 PE1,2

REPEAT

MR2,1

MR2,2

Mask Synch

DIS

PESynch1

PE2,1 PE2,2
MR3,1

MR3,2

PE3,1 PE3,2
MR1,1

MR1,2

PESynch2

PESynch3

IR1

IR2

Figure 6: Example of an unfolded HSDF represen-
tation of the algorithm (by a factor of 3).

execution of the DIS actor. That is, for each execution of
the DIS actor, the PE Synch executes m times.

We use a self-timed model to coordinate interaction be-
tween the MTC and the PE cluster. At the start of reading
a new set of masks, the controller must synchronize with the
PEs to make sure that they are done with processing of the
current masks. This synchronization process is represented
as the edge directed from the PE Synch actor to the starting
actor of the MTC block. The edge delay connecting MRi,n

to MRi,1 represents the initially-available mask data from
pre-loading the first set of masks for a new image to their
associated BRAMs.

A multirate SDF graph unfolds unambiguously into a ho-
mogeneous SDF (HSDF) graph [2], which in general leads
to an expansion of the dataflow representation. An exam-
ple of an SDF-to-HSDF transformation is given in Figure 6
for m = 3 and n = 2. For performance analysis, it is nec-
essary to reason in terms of directed cycles in the HSDF
representation.

5.4 Performance Analysis
We use the above modeling approach to understand and

explore performance issues. From the model it may be ob-
served that the HSDF cycles can be decomposed into a lim-
ited set of classes, where each class exhibits very similar
patterns of cyclic paths. Also, many cycles in the graph are
isomorphic, where by isomorphic cycles, we mean those in
which the vertices and edges can be placed in one-to-one
correspondence with one another so that corresponding ver-
tices have the same execution times and corresponding edges
have the same delays. Understanding these isomorphic re-
lationships allows us to greatly reduce the number of MCM
computations that actually need to be considered. Similarly,
understanding the patterns of variation across certain sets

of similarly-structured cycles makes it easy to extract the
critical cycles (the cycles with maximum MCM) from these
sets.

Table 2 tabulates the different classes of cycles, along with
a description and the MCM for each class, where the MCM
is obtained by extracting the critical cycle in each class.

6. EXPERIMENTAL RESULTS
We have evaluated our proposed designs on a Xilinx ML310

development board.

6.1 Design Space Exploration
As it can be seen from Table 2, the system performance

is a function of m, n, t(PE), t(MR) and t(DIS). In this
work, we assume that the number of masks and the mask
sizes are fixed — as mentioned before, we use a shape-based
face detection algorithm, where face is modeled as an ellipse.
For operational value, the implementation should be able to
handle variability in size of the faces as that information
is not usually available a-priori. We handle this by creat-
ing several elliptical masks of varying sizes. Using all these
masks, the detection is performed and the position of the
face is determined by the quality of the filter response. The
number of the masks required is bounded by the possible
ellipticity of faces and by the size of the image. Our target
application is a smart-camera based vision system. Given a
particular smart-camera, the size of the images shot by that
camera can be assumed to be fixed. Under these assump-
tions, and above masks parameters, the algorithm is able to
perform robustly for faces of very different sizes.

Given the above justification, we can assume the t(MR)
and m are not variable (The mask size considered is 65× 81
and the size of the mask set is 93.) t(PE) is a function of
several parameters but we only consider the degree of fine-
grain parallelism (i.e. how many simultaneous operations
can be performed within each PE), image size and the res-
olution (number of rows/columns considered) at which the
image is compared with the mask. t(DIS) is a function of
frame sizes. To keep the design space manageable we fix the
frame size (240× 320) and vary the number of PEs (n), the
steps and fine-grain parallelism (up to the HW limits). The
stripe size for this implementation is 65×160. The execution
times are obtained by multiplying the number of execution
cycles for each node by the inverse of the clock frequency,
which is 125MHz for the given board. The delays are given
by the number of cycles required for the initial values to load
from the source node to the destination node in the synchro-
nization graph. From this we obtain the cycle means for the
stated classes of cycles, which give the throughput as the
inverse of the cycle mean amongst all possible cycles.

We observe that the cycles from class 6 yield the largest
cycle mean. This is expected, as the most critical path is
that which involves the execution of PEs along with the
reading of the next mask. To obtain a satisfactory through-
put besides keeping up with the camera frame rate we need
to vary the parameters without affecting accuracy. We ob-
serve that the throughput cannot be improved by merely
increasing the number of PEs. We can increase the number
of columns being skipped but that is also bounded by the
accuracy of the face detection. Also the actual throughput is
a function of the number of image stripes present and hence
is affected by the resolution of the camera.

The number of PEs that may be implemented is limited by

the area constraints. The board has 136 BRAMs present of
which few are allocated for the use of other modules such as
down-sampling unit, the powerPC and so on. 8 BRAMs are
required for each PE, that sets an upper bound of number of
PEs to 15. Also parallelization is possible within each PE:
since the multiplications required for the calculation of each
correlation value are independent of each other, at the same
instant more than one multiplication may be performed.
The number of multipliers available on the board limits this
parallelization. There are 136 multipliers on board which
limits the number of PEs to 13. The I/O buffers present on
the board also impose serious restrictions on the number of
PEs, since each PE communicates with the down-sampling
unit, the BRAMs, the external DDR SDRAM memory con-
troller and the output interface it has a significant number
of I/O ports. This limits the maximum number of PEs that
may be practically implemented to 6. We obtain execution
times with parameters bounded by the above analysis. The
results are presented in Table 3 in which n is the number
of PEs, degree of parallelism is the number of additional
multiplications done simultaneously in each PE and steps is
granularity at which the image is correlated with a mask.

The maximum frame rate of applications of security and
video surveillance toward which this work is targeted is 30
fps. With the current board and available hardware re-
sources the implementation achieves a maximum frame rate
of 12 fps. This entails the discarding of every two out of
three frames at most, which can be tolerated for such appli-
cations.

6.2 Fidelity Analysis
In this section we calculate the fidelity of our performance

estimations as the design parameters are varied,

Fidelity =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

fij (3)

where,

fij =

{
1 ifsign(Si − Sj) = sign(Mi −Mj);
0 otherwise

(4)

the Sis denote the simulated execution times ; and the Mis
are the corresponding estimates from the MCM expression.

In case of fixed frame size for the 14 design points that
we presented in Table 3 we get the fidelity of 0.868. In our
model for simplicity we have assumed a small constant value
for all synchronization actors (PE Synch) and that causes
the difference between the estimated and experimental re-
sults. However, the high value of fidelity demonstrates the
accuracy and robustness of our modeling technique. Alter-
natively, the models and design space exploration techniques
employed in this paper can be applied on more powerful
boards to explore implementations that approach or achieve
the 30 fps target.

7. CONCLUSIONS
In this paper, we have targeted architectural design, mod-

eling, and exploration of an embedded system for face de-
tection on a reconfigurable system on chip. Our work pro-
vides design details and experimental results for a useful
family of face detection architectures. Additionally, we have
developed contributions to design methodology for embed-
ded multiprocessor design through useful generalizations of

Table 2: Maximum Cycle Mean Expressions
Description of Cycle MCM

no Classes

1 reading of the masks MR2,1 → MR2,2 · · · → MR2,n
m×n×t(MR)

D0→ MR3,1 · · · → MR1,1 · · · → MR1,n → MR2,1

2 reading of image rows DIS → IRi → DIS t(DIS)+n×t(IR)
D1+D2

3 reading of image rows DIS → IRi → REPEAT → PESynch → t(DIS)+n×t(IR)+3
D1

with synchronizations MaskSynch → DIS
4 PEs synchronization PESynchm → PE1,i → PE2,i · · · →

PEm,i → PESynchm or

PESynchm → PE1,i → PESynch1 → m×(t(PE)+1)
D1

PE2,i · · · → PESynchm

5 synchronization of PEs PESynchm → MR2,1 · · · → MR3,1 · · · →
and reading of masks MR3,n · · · → MR1,1 → · · · → MR1,n → PE1,i

m×n×t(MR)+m×(t(PE)+1)
D3+D4→ PE2,i · · · → PESynchm or

PESynchm → MR2,1 · · · → MR3,1 · · · →
MR3,n · · · → MR1,1 → · · · → MR1,n → PE1,i

→ PESynch1 → PE2,i · · · → PESynchm

6 synchronization of PEs a)PESynchm → MR2,1 · · · → MR2,n → i)
m
2 (1+n×t(MR)+t(PE))

D3

with reading of masks PE2,i → PESynch2 → MR4,1 · · · → MR4,n → ii)
m+1

2 (t(PE)+1)+ m−1
2 n×t(MR)

D3
in i) m=2k, PE4,i · · · → PESynchm

and in ii) m = 2k+1 b) PESynchm → PE1,i → PESynch1 → i)
(m

2 +1)(t(PE)+1)+(m
2 −1)n×t(MR)

D3

MR3,1 · · · → MR3,n → PE3,n → PESynch3 ii)
m+1

2 (t(PE)+1)+ m−1
2 n×t(MR)

D3· · · → PEm,n → PESynchm

Table 3: Execution time for one frame for various
design parameters

Estimation(ms) Experimental(ms)
n degree of steps steps

parallelism 2 4 2 4
6 0 451 136 697 205
1 20 168 62 227 79
2 10 170 62 227 79
3 6 180 65 249 85
4 5 176 63 227 79
5 4 173 63 227 79
6 3 184 66 249 85

the synchronization graph modeling approach, and their ap-
plication to processing of multidimensional signals. Using
these approaches, we have presented multiple designs that
expose important trade-offs between different architectural
features. As future work, we plan to extend this model to
explore hardware/software co-design. Additionally, in the
current method, given several frames of a video, our ap-
proach will perform face detection independently for each
frame, which discards the inherent temporal continuity be-
tween the frames. We plan to address these issues in our fu-
ture work by employing more sophisticated techniques, such
as Kalman filters and particle filters.

7.1 Acknowledgments
This research was supported by grant number 0325119

from the U.S. National Science Foundation.

8. REFERENCES
[1] A. Dasdan and R. K. Gupta, Faster maximum and

minimum mean cycle algorithms for system
performance analysis, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 17, No.
10, pages 889-899. 1998.

[2] E.A. Lee, and D.G. Messerschmitt. Static scheduling of
synchronous dataflow programs for digital signal
processing. IEEE Transactions on Computers,
February, 1987.

[3] R. McCready, Real-time face detection on a
configurable hardware system, Proceedings of the The
Roadmap to Reconfigurable Computing, 10th
International Workshop on Field-Programmable Logic
and Applications, 2000.

[4] H. Moon, R. Chellappa, and A. Rosenfeld, “Optimal
edge-based shape detection,” IEEE Transaction on
Image Processing, Vol. 11, pp. 1209-1227, 2002.

[5] S. Sriram and E. A. Lee. Determining the order of
processor transactions in statically scheduled
multiprocessors. Journal of VLSI Signal Processing,
March, 1997.

[6] S. Sriram and S. S. Bhattacharyya, Embedded
Multiprocessors: Scheduling and Synchronization.
Marcel Dekker, Inc., 2000.

[7] D. C. Suresh, W. A. Najjar, J. Villareal, G. Stitt and
F. Vahid,“Profiling Tools for Hardware/Software
Partitioning of Embedded Applications,” Proc. ACM
Symp. On Languages, Compilers and Tools for
Embedded Systems (LCTES), June 2003.

[8] T. Theocharides, G. Link, N. Vijaykrishnan, M. J.
Irwin, and W. Wolf, .Embedded hardware face
detection,. in Proceedings of the 17th International
Conference on VLSI Design, 2004.

[9] P. Viola and M. Jones, Robust real-time object
detection,. in Proceedings of IEEE workshop on
Statistical and Computational Theories of Vision, 2001.

[10] M-H. Yang, D. J. Kriegman, and N. Ahuja, Detecting faces
in images: a survey,. IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 34.58, Jan. 2002.

