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Abstract. Face recognition under varying pose is a challenging problem, espe-
cially when illumination variations are also present. Under Lambertian model,
spherical harmonics representation has proved to be effective in modelling illu-
mination variations for a given pose. In this paper, we extend the spherical har-
monics representation to encode pose information. More specifically, we show
that 2D harmonic basis images at different poses are related by close-form linear
combinations. This enables an analytic method for generating new basis images
at a different pose which are typically required to handle illumination variations
at that particular pose. Furthermore, the orthonormality of the linear combina-
tions is utilized to propose an efficient method for robust face recognition where
only one set of front-view basis images per subject is stored. In the method, we
directly project a rotated testing image onto the space of front-view basis images
after establishing the image correspondence. Very good recognition results have
been demonstrated using this method.

1 Introduction

Face recognition is one of the most successful applications of image analysis and under-
standing. In spite of recent advances, robust face recognition under variable lighting and
pose remains to be a challenging problem. This is due to the fact that we need to com-
pensate for both significant pose and illumination change at the same time. It becomes
even more difficult when only one training image per subject is available. Recently,
methods have been proposed to handle the illumination problem when only one train-
ing image is available, for example, a statistical learning method [13] based on spheri-
cal harmonics representation [1, 9]. In this paper, we propose to extend the harmonics
representation to encode pose information. That is, all the harmonic basis images of a
subject at various poses are related to the front-view basis images via close-form linear
combinations. Moreover, these linear combinations are orthonormal. This suggests that
recognition methods based on projection onto the harmonic basis images [1] for rotated
testing images can be made very efficient. We do not need to generate a new set of basis
images at the same pose as that of the testing images. In stead, we can directly use the
existing front-view basis images without changing the matching score defined in [1].

We propose an efficient face recognition method that needs only one set of basis im-
ages per subject for robust recognition of faces under variable illuminations and poses.
The flow chart of our face recognition system is shown in Fig. 1. We have a single
training image at the frontal pose for each subject in the training set. The basis images



Fig. 1. The flow chart of the proposed face recognition system.

for each training subject are recovered using a statistical learning algorithm [13] with
the aid of a bootstrap set consisting of 3D face scans. For a testing image at a rotated
pose and under an arbitrary illumination condition, we first establish the image corre-
spondence between the testing image and the training images. The frontal pose image
is then warped from the testing image. Finally, a face is identified for which there exists
a linear reconstruction based on basis images that is the closest to the testing image.

The remainder of the paper is organized as follows: Section 2 introduces the related
work. The pose-encoded spherical harmonic representation is presented in Section 3
where we prove that the basis images at a rotated pose is a linear combination of the ba-
sis images at the frontal pose. Section 4 presents the complete face recognition system.
Specifically, in Section 4.1 we briefly summarize a statistical learning method to recover
the basis images from a single image when the pose is fixed. Section 4.2 describes the
recognition algorithm, and the system performance is demonstrated in Section 4.3. We
conclude our paper in Section 5.

2 Related Work

Either pose variations or illumination variations may cause serious performance degra-
dation for existing face recognition systems. [17] examined these two problems and
reviewed some approaches to solving them. The early effort to handle illumination vari-



ations was to discard the first few principal components, which packs most of the energy
caused by illumination variations [2]. In this method, the testing image must have the
same pose as the training images. In [3], a template matching scheme was proposed to
handle pose variations. It needs many different views per person and no lighting varia-
tions are allowed. Approaches to face recognition under pose variations [8][6] avoid the
correspondence problem by storing multiple images at different poses for each person.
View-based eigenface methods [8] explicitly code the pose information by construct-
ing an individual eigenface for each pose. [6] treats face recognition across poses as a
bilinear problem and disentangles the face identity and the head pose.

Few methods consider both pose and illumination variations at the same time. The
synthesis method in [7] can handle both illumination and pose variations by reconstruct-
ing the face surface using the illumination cone method under fixed pose and rotating it
to the desired pose. A set of training images are required for each subject to construct
the illumination cone. [16] presented a symmetric shape-from-shading (SFS) approach
to recover both shape and albedo for symmetric objects. This work was extended in
[5] to recover the 3D shape of a human face using a single image. In [15], a unified
approach was proposed to solving the pose and illumination problem. A generic 3D
model was used to establish the correspondence and estimate the pose and illumination
direction. [12] presents a pose-normalized face synthesis method under varying illu-
minations using the bilateral symmetry of the human face. A Lambertian model was
assumed and single light source was considered. [18] extends the photometric stereo al-
gorithms to recover albedos and surface normals from one image under unknown single
distant illumination conditions.

Recent work on spherical harmonics representation has been independently con-
ducted by by Basri et al. [1] and Ramamoorthi [9]. It has been shown that the set of
images of a convex Lambertian object obtained under a wide variety of lighting condi-
tions can be approximated accurately by a low dimensional linear subspace. The basis
images spanning the illumination space for each face can be rendered from a 3D scan of
the face [1] or estimated by applying PCA to a number of images of the same subject un-
der different illuminations [9]. Following the statistical learning scheme in [10], Zhang
et al. [13] showed that the basis images spanning this space can be recovered from just
one image taken under arbitrary illumination conditions when the pose is fixed.

To handle both pose and illumination variations, 3D morphable face model has been
proposed. By far the most impressive face synthesis results were reported in [4] fol-
lowed with very high recognition rates, where the shape and texture of each face is
represented as a linear combination of a set of 3D face exemplars and the parameters
are estimated by fitting a morphable model to the input image. In order to handle illu-
mination more effectively, a recent work [14] incorporates spherical harmonics into the
morphable model framework. Most of the 3D morphable model approaches are compu-
tationally intense because of the large number of parameters that need to be optimized.

3 Pose-Encoded Spherical Harmonics

The spherical harmonics are a set of functions that form an orthonormal basis for the set
of all square-integrable functions defined on the unit sphere [1]. It can be shown that the



irradiance can be approximated by the combination of the first nine spherical harmonics
for Lambertian surfaces. Any image of an object under certain illumination conditions
is a linear combination of a series of basis images{bmn}. In order to generate the basis
images for the object, 3D information is required as shown in Appendix A.

For a fixed pose, spherical harmonics representation has proved to be effective in
modelling illumination variations, even in the case when a bootstrap set of 3D mod-
els and only one training image per subject are available [13]. In the presence of both
illumination and pose variance, two possible approaches can be taken. One is to use
3D morphoable model to reconstruct the 3D model from a single training image and
then build spherical harmonic basis images at the pose of the testing image for recog-
nition [14]. Another approach is to require multiple training images at various poses in
order to recover the new set of basis images at each pose. However, multiple training
images are not always available and 3D morphoable model method could be compu-
tationally expensive. As for efficient recognition of a rotated testing image, a natural
question to ask is: can we represent the basis images at different poses using one set
of basis images at a given pose, say, the front-view pose? In this section, we address
this question by showing that 2D harmonic basis images at different poses are related
by close-form linear combinations. This enables an analytic method for generating new
basis images at different poses from basis images at one pose.

Assuming that the testing image is at a different pose (rotated view) as the training
images (usually frontal view), we aim to derive the basis images at the rotated pose
from the basis images at the frontal pose, assuming that the correspondence between
the rotated view and the frontal view has been built. The general rotation can be decom-
posed into three concatenated rotations around theX, Y andZ axis, namely elevation,
azimuth and roll, respectively. Roll is an in-plane rotation that can be handled much
easily and will not be discussed here. The following theorem states that the basis im-
ages at the rotated pose is a linear combination of the basis images at the frontal pose,
and the transformation matrix is a function of the rotation angles only.

Theorem 1Assume a rotated view is obtained by rotating a front-view head with
an azimuth angle−θ. With the correspondence between the frontal view and the rotated
view, the basis imagesB′ at the rotated pose are related to the basis imagesB at the
frontal pose in the following linear form:




b′00 = b00


b′10
b
′e
11

b
′o
11


 =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1







b10

be
11

bo
11







b′20
b
′e
21

b
′o
21

b
′e
22

b
′o
22




=




1− 3
2 sin2 θ −√3 sin θ cos θ 0

√
3

2 sin2 θ 0√
3 sin θ cos θ cos2 θ − sin2 θ 0 − cos θ sin θ 0

0 0 cos θ 0 − sin θ√
3

2 sin2 θ cos θ sin θ 0 1− 1
2 sin2 θ 0

0 0 sin θ 0 cos θ







b20

be
21

bo
21

be
22

bo
22




(1)
If there is an elevation angle−β other than the azimuth angle−θ, the basis images

B′′ for the newly rotated view are related toB′ in the following linear form:
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(2)
For proof of this theorem, please see Appendix B.
The basis images at various poses can be generated from a set of basis images at

the frontal pose using the linear relationship in (1) and (2). Although in theory new
basis images can be generated from a rotated 3D model inferred by existing basis im-
ages since basis images actually capture the albedo (b00) and the 3D surface normal
(b10, b

e
11, b

o
11) of a given human face. The procedure of such 3D recovery is not trivial

in practice, let alone the computational cost. Now we have proved that the procedure of
first rotating objects and then recomputing basis images at a desired pose can betotally
avoided.

It is easy to see that the coefficient matrices in (1) and (2) are block diagonal, thus
preserving the energy on each bandn = 0, 1, 2. Moreover, the orthonormality of the
coefficient matrices helps to further simplify the computation required for recognition
of the rotated testing image as shown in Section 4.2.

We synthesized the basis images at arbitrary rotated poses from those at the frontal
pose using (1) and (2), and compared them with the ground truth in Fig. 2. The first row
through the third row are the results for subject 1, with the first row showing the basis
images at the frontal pose generated from the 3D scan, the second row showing the
synthesized basis images at the rotated pose (azimuth angleθ = −30o, elevation angle
β = 20o), and the third row showing the ground truth of the basis images at the rotated
pose. Rows four through six are the results for subject 2, with the fourth row showing the
basis images at the frontal pose generated from the 3D scan, the fifth row showing the
synthesized basis images for another rotated view (azimuth angleθ = −30o, elevation
angleβ = −20o), and the last row showing the ground truth of the basis images at the
rotated pose. As we can see from Fig. 2, the synthesized basis images at the rotated
poses have no noticeable difference with the ground truth.

4 Face Recognition Using Pose-Encoded Spherical Harmonics

In this section we present an efficient face recognition method using pose-encoded
spherical harmonics. Only one training image is needed per subject and high recog-
nition performance is achieved even when the testing image is at a different pose from
the training image and under an arbitrary illumination condition.



Subject 1: the basis images at the frontal pose generated from the 3D scan

Subject 1: the synthesized basis images at the rotated pose

Subject 1: the ground truth of the basis images at the rotated pose

Subject 2: the basis images at the frontal pose generated from the 3D scan

Subject 2: the synthesized basis images at the rotated pose

Subject 2: the ground truth of the basis images at the rotated pose

Fig. 2.Results of the synthesized basis images at the rotated pose. The first row through the third
row are the results for subject 1, with the first row showing the basis images at the frontal pose
generated from the 3D scan, the second row showing the synthesized basis images at the rotated
pose (with the azimuth angleθ = −30o and the elevation angleβ = 20o), and the third row
showing the ground truth of the basis images at the rotated pose. Rows four through six are the
results for subject 2, with the fourth row showing the basis images at the frontal pose generated
from the 3D scan, the fifth row showing the synthesized basis images at another rotated pose
(with the azimuth angleθ = −30o and the elevation angleβ = −20o) and the last row showing
the ground truth of the basis images at the rotated pose.
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Fig. 3. The sample mean basis images estimated from the bootstrap set.

4.1 Statistical Models of Basis Images

We briefly summarize a statistical learning method to recover the harmonic basis images
from only one image taken under arbitrary illumination conditions, as shown in [13].

We build a bootstrap set with 50 3D face scans and the texture information from
Vetter’s 3D face database [19], and generate9 basis images for each face model. For
a noveld-dimensional vectorized imageI, let B be thed × 9 matrix of basis images,
α a 9 dimensional vector andE a d-dimensional error term, we haveI = Bα + E. It
is assumed that the pdf’s ofB are Gaussian distributions and the sample mean vectors
µb(x) and the sample covariance matrixesCb(x) are estimated from the basis images
in the bootstrap set. Fig. 3 shows the sample mean of the basis images estimated from
the bootstrap set.

The problem of estimating the basis imagesB and the illumination coefficientsα is
a coupled estimation problem because of its bilinear form. It is simplified by estimating
α in a prior step with kernel regression and using it consistently across all pixels to re-
coverB. K bootstrap images{Jk}K

k=1 with known coefficients{αk}K
k=1 are generated

from the 3D face scans in the bootstrap set. Given a new imageitra, the coefficients
αtra can be estimated as

αtra =
∑K

k=1 wkαk∑K
k=1 αk

(3)

wherewk = exp[− 1
2 (D(i, Jk)/σk)2] andD(i, Jk) = ‖i− Jk‖2, σk is the width of the

k-th Gaussian kernel which controls the influence ofJk on the estimation ofαtra. All
{σk}K

k=1 are pre-computed in a way such that ten percent of the bootstrap images are
within 1× σk at eachσk. The sample meanµe(x, α) and the sample varianceσ2

e(x, α)
of the error termE(α) are also estimated using kernel regression, similar to (3).

Given a novel face imagei(x), with the estimated coefficientsα, the corresponding
basis imagesb(x) at each pixelx are recovered by computing the maximum a posteriori
(MAP) estimate,bMAP (x) = argmaxb(x)(P (b(x)|i(x))). Using Bayes rule:

bMAP (x) = argmaxb(x)P (i(x)|b(x))P (b(x))
= argmaxb(x)

{N (
b(x)T α + µe, σ

2
e

)×N (µb(x), Cb(x))
}

(4)

Taking logarithm, and setting the derivatives of the right hand side of (4) (w.r.tb(x))
to 0, we getA ∗ bMAP = T , whereA = 1

σ2
e
ααT + C−1

b andT = (i−µe)
σ2

e
α + C−1

b µb.
By solving this linear equation,b(x) of the subject can be recovered.

Combining Section 3 and Eq. (4), we illustrate in Fig. 4 the procedure of generating
the basis images at a rotated pose (azimuth angleθ = −30o) from a single training
image at the frontal pose. In the first part of Fig. 4, rows one though three show the
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Basis images recovery from a single image under arbitrary illumination conditions

Basis images recovery from a single image under arbitrary illumination conditions

Basis images recovery from a single image under arbitrary illumination conditions

Generated basis images at the rotated pose from the recovered basis images at the frontal pose

Ground truth of the basis images at the rotated pose

Fig. 4.Rows one though three show the basis images recovery from a single training image, with
the first column showing different training imagesI under arbitrary illumination conditions for
the same subject and the rest 9 columns showing the reconstructed basis images. Row four shows
the generated basis images at the rotated pose from the recovered basis images at the frontal pose,
and the fifth row show the ground truth of the basis images at the rotated pose.

basis images recovery from a single training image, with the first column showing dif-
ferent training imagesI under arbitrary illumination conditions for the same subject
and the remaining 9 columns showing the reconstructed basis images. In the second
part of Fig. 4, row four shows the generated basis images at the rotated pose from the
recovered basis images at the frontal pose, and the fifth row shows the ground truth of
the basis images at the rotated pose. As we can see from the plots, the basis images re-
covered from different training images of the same subject look very similar, although
not perfect.

4.2 Recognition

For recognition, we follow a simple yet effective algorithm given in [1]. A face is iden-
tified for which there exists a weighted combination of basis images that is the closest
to the testing image. LetB be the set of basis images at the frontal pose, with sized×r,



Fig. 5.Building dense correspondence between the rotated view and the frontal view using sparse
features. The first and second image show the sparse features and the constructed meshes on
the mean face at the frontal pose. The third and fourth image show the picked features and the
constructed meshes on the given testing image at the rotated pose.

whered is the number of pixels in the image andr the number of basis images used.
We user = 9 as it is a natural choice capturing 98 percent of the energy of all the
model’s images [1]. Every column ofB contains one spherical harmonic image. These
images form a basis for the linear subspace, though not an orthonormal one. AQR de-
composition is applied to computeQ, ad × r matrix with orthonormal columns, such
thatB = QR whereR is anr × r upper triangular matrix.

For a testing imageItest at a rotated pose, we can efficiently generate the set of basis
imagesB′ at that pose for each training subject from Section 3. The orthonormal basis
Q′ of the space spanned byB′ can be computed byQR decomposition. The distance
from the testing imageItest to the space spanned byB′ is computed asdmatch =
‖Q′Q′T Itest − Itest‖. However, this algorithm is not efficient overall because the set
of basis imagesB′, or the orthonormal basisQ′, has to be generated for each training
subject at the pose of an arbitrarily rotated testing image. The question is that can we
have an overall efficient recognition method. The answer is yes based on the following
lemma:

Lemma 2 The matching distancedmatch of a rotated testing imageItest based on
the basis imagesB′ at that pose is the same as the matching distance of a geometrically
synthesized front-view imageIf based on the basis imagesB.

Let C be the transpose of the combined coefficient matrices in (1) and (2), we
haveB′ = BC = QRC by QR decomposition. ApplyingQR decomposition again
to RC, we haveRC = qrRC whereqr×r is an orthonormal matrix. We now have
B′ = QqrRC = QqrRC by assumingQq = Qq. SinceQq is the product of two
orthonormal matrices, it forms a valid orthnormal basis forB′. Hence the matching dis-
tance is‖QqQ

T
q Itest−Itest‖. NowQqQ

T
q = QqqT QT = QQT sinceq is orthonormal.

Hence the final matching distance is‖QQT Itest − Itest‖. Recall this implies that the
cross-pose correspondence betweenQ (B) andItest has been established. To make this
explicit, we useIf , a geometrically warped front-view version ofItest, in the equation.

In brief summary, we now have a very efficient solution for face recognition to han-
dle both pose and illumination variations as only one imageIf needs to be synthesized.

The remaining problem is that how the frontal pose imageIf is warped fromItest.
Apparently the correspondence between the frontal pose and the rotated pose has to be
established for the testing image. Finding correspondence is always challenging. Most



Table 1.The correct recognition rates at two rotated pose under various lighting conditions.

Illumination condition Correct recogni-
tion rate at the
poseθ = −30o

using our ap-
proach

Correct recogni-
tion rate with the
training images
at the same pose
available

Correct recog-
nition rate at
the pose θ =
−30o, β = 20o

using our ap-
proach

Correct recogni-
tion rate with the
training images
at the same pose
available

(γ = 90o, τ = 10o) 94% 94% 94% 94%

(γ = 30o, τ = 50o) 92% 100% 96% 100%

(γ = 40o, τ = −10o) 90% 100% 92% 100%

(γ = 70o, τ = 40o) 94% 100% 100% 100%

(γ = 80o, τ = −20o) 80% 96% 86% 94%

(γ = 50o, τ = 30o) 94% 100% 100% 100%

(γ = 20o, τ = −70o) 86% 96% 94% 100%

(γ = 20o, τ = 70o) 86% 92% 96% 96%

(γ = 120o, τ = −70o) 42% 76% 62% 78%

(γ = 120o, τ = 70o) 58% 84% 84% 86%

of the approaches to handle pose variations utilized manually picked sparse features
to build the dense cross-pose or cross-subject correspondence. ForItest at an arbitrary
pose, 63 designed feature points (eyebrows, eyes, nose, mouth and the face contour)
were picked. A mean face from the training images at the frontal pose and the corre-
sponding feature points were used to help to build the correspondence betweenItest

andIf . Triangular meshes on both faces were constructed and barycentric interpolation
inside each triangle was used to find the dense correspondence. The number of feature
points needed in our approach is comparable to the 56 manually picked feature points
in [14] to deform the 3D model. Fig. 5 shows the feature points and the meshes on the
mean face at the frontal pose and on a testing image at a rotated pose.

4.3 Recognition Results

We conducted the recognition experiments on Vetter’s 3D face model database [19] for
the sake of controllability and the convenience of comparison. There are totally 100 3D
face models in the database, wherein 50 of them were used as the bootstrap set and
the other 50 were used to generate training images. We synthesized the training images
under a wide variety of illumination conditions with the 3D scans of the subjects. For
each subject, only one frontal view image was stored as training image and used to
recover the basis imagesB using the algorithm in Section 4.1. The orthonormal basis
Q of the space spanned byB was obtained by applyingQR decomposition toB. For
a testing imageItest at an arbitrary pose, the frontal pose imageIf was synthesized by
warpingItest, and the recognition score was computed as‖QQT If − If‖.

We generated the testing images at different poses from the training images by ro-
tating the 3D scans and illuminated them with various lighting conditions (represented
by slant angleγ and tilt angleτ ). Fig. 6 (a) shows the testing images of a subject at
the pose with the azimuth angleθ = −30o and under 6 different lighting conditions.



We also did experiments under some extreme lighting conditions as shown in Fig. 6
(b). The corresponding frontal pose images were synthesized as shown in Fig. 6 (c) and
(d) respectively. The correct recognition rates obtained by using‖QQT If − If‖ for all
these illumination conditions are listed in column 2 of Table 1. The testing images at
another pose (withθ = −30o andβ = 20o) of the same subject are shown in Fig. 6 (e)
and (f), with the generated frontal pose images shown in Fig. 6 (g) and (h) respectively
and the correct recognition rates listed in column 4 of Table 1.

As an comparison, we also conducted the recognition experiment on the same test-
ing images assuming that the training images at the same pose are available, as most
of the approaches suggested. By recovering the basis imagesB at that pose using the
algorithm in Section 4.1 and computing‖QQT Itest − Itest‖, we achieved the correct
recognition rates as shown in column 3 and column 5 of Table 1 respectively, in corre-
spondence with the two poses mentioned above. As we can see, the recognition rates
using our approach are comparable to those when the training images at the rotated pose
are available.

We have to point out that if the the testing image has a large pose variation from the
frontal pose, it is inevitable that part of the face is self-occluded (Fig. 6). To have good
recognition result, only the visible part of the face is used for recognition. Accordingly,
only the visible parts of the basis images at the frontal pose are used as well.

5 Discussions and Conclusion

We have presented an efficient face recognition method to handle arbitrary pose and
illumination from a single training image per subject using pose-encoded spherical har-
monics. With a pre-built 3D face bootstrap set, we use a statistical learning method to
obtain the spherical harmonic basis images from a single training image. We then show
that the basis images at a rotated pose is a linear combination of the basis images at the
frontal pose. For a testing image at a different pose from the training images, recogni-
tion is accomplished by comparing the distance from a warped version of the testing
image to the space spanned by the basis images of each model. Experimental results
show that high recognition rate can be achieved when the testing image is at a different
pose and under an arbitrary illumination condition. We are planning to conduct exper-
iments using the proposed approach on larger databases such as the CMU-PIE [11]
database.

In the proposed method and existing methods where only one training image is
available, finding the cross-correspondence between the training images and the testing
image is inevitable. If the testing image is at a pose around theY -axis only, a simpler
method can be used to find the self-correspondence of the testing image by exploit-
ing the bilateral symmetry of the human face. As a result, we do not need to build
the cross-subject correspondence between the testing image and the training images.
Unfortunately, automatic computation of these correspondences is not a trivial task and
manual operation is required in existing methods. We are looking into possible solutions
to address this issue.



(a) (b)

(d) (d)

(e) (f)

(g) (h)

Fig. 6. (a) shows the testing images of a subject at the pose with the azimuthθ = −30o under
different lighting conditions ((γ = 90o, τ = 10o), (γ = 30o, τ = 50o), (γ = 40o, τ = −10),
(γ = 20o, τ = 70o), (γ = 80o, τ = −20o) and (γ = 50o, τ = 30o) from left to right).
The testing images of the same subject under some extreme lighting conditions ((γ = 20o, τ =
−70o), (γ = 20o, τ = 70o), (γ = 120o, τ = −70o) and(γ = 120o, τ = −70o) from left to
right) are shown in (b). (c) and (d) show the generated frontal pose images from the testing images
in (a) and (b) respectively. The testing images at another pose (withθ = −30o andβ = 20o) of
the same subject are shown in (e) and (f), with the generated frontal pose images shown in (g)
and (h) respectively.
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Appendix A: Harmonic Basis Images

The harmonic basis image intensity of a pointp with surface normaln = (nx, ny, nz)
and albedoλ can be computed as (5), wherenx2 = nxnx. ny2 , nz2 , nxy, nxz, nyz are
defined similarly.λ. ∗ t denotes the component-wise product ofλ with any vectort.

b00 =
1√
4π

λ, b10 =

√
3
4π

λ. ∗ nz, be
11 =

√
3
4π

λ. ∗ nx, bo
11 =

√
3
4π

λ. ∗ ny,

b20 =
1
2

√
5
4π

λ. ∗ (2nz2 − nx2 − ny2), be
21 = 3

√
5

12π
λ. ∗ nxz, bo

21 = 3

√
5

12π
λ. ∗ nyz,

be
22 =

3
2

√
5

12π
λ. ∗ (nx2 − ny2), bo

22 = 3

√
5

12π
λ. ∗ nxy (5)

Appendix B: Proof of Theorem 1

Assume that(nx, ny, nz) and(n′x, n′y, n′z) are the the surface normals of pointp at the
frontal pose and the rotated view respectively.(n′x, n′y, n′z) is related to(nx, ny, nz) as




n′x
n′y
n′z


 =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ







nx

ny

nz


 (6)



where−θ is the azimuth angle.
By replacing(n′x, n′y, n′z) in (5) with (nz sin θ + nx cos θ, ny, nz cos θ − nx sin θ),

and assuming the correspondence between the rotated view and the frontal view has
been built, we have

b′00 =
1√
4π

λ, b′10 =

√
3
4π

λ. ∗ (nz cos θ − nx sin θ),

b
′e
11 =

√
3
4π

λ. ∗ (nz sin θ + nx cos θ), b
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√
3
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1
2

√
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λ. ∗ (2(z cos θ − nx sin θ)2 − (nz sin θ + nx cos θ)2 − n2
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12π
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12π
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Rearranging, we get

b′00 = b00, b′10 = b10 cos θ − be
11 sin θ, b

′e
11 = be

11 cos θ + b10 sin θ, b
′o
11 = b11,

b′20 = b20 −
√

3 sin θ cos θbe
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√
5
4π

3
2

sin2 θ(n2
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x),

b
′e
21 = (cos2 θ − sin2 θ)be
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√
5

12π
sin θ cos θ(n2
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x),

b
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21 cos θ − bo
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22 + cos θ sin θbe
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sin2 θ(n2
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22 cos θ + bo
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As shown in (8),b′00, b
′
10, b

′e
10, b

′o
11, b

′o
21 andb

′o
22 are in the form of linear combination

of the basis images at the frontal pose. Forb′20,b
′e
21 andb

′e
22, we need to have(n2

z − n2
x)

which is not known. From [1], we know that if the sphere is illuminated by a single di-
rectional source in a direction other than thez direction the reflectance obtained would
be identical to the kernel, but shifted in phase. Shifting the phase of a function dis-
tributes its energy between the harmonics of the same ordern (varying m), but the
overall energy in each ordern is maintained. The quality of the approximation, there-
fore, remains the same. This can be verified byb

′2
10 + b

′e2
11 + b

′o2
11 = b2

10 + be2
11 + bo2

11 for
the ordern = 1. Noticing thatb
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Then
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22 andQ = P cos θ
sin θ , we get
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The two possible roots of the polynomial givesP = −2 sin θ cos θbe
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Using (8) and (10), we can write the basis images at the rotated pose in the matrix form
of the basis images at the frontal pose, as shown in (1).

Assume there is an elevation angle−β after the azimuth angle−θ and denote
(n′′x, n′′y , n′′z ) as the surface normal for the new rotated view, we have




n′′x
n′′y
n′′z


 =




1 0 0
0 cos β − sinβ
0 sin β cosβ







n′x
n′y
n′z


 (11)

Repeating the above derivation easily leads to the linear equations in (2) which relates
the basis images at the new rotated pose to the basis images at the old rotated pose.


