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Fast two-frame multiscale dense optical flow
estimation using discrete wavelet filters
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A multiscale algorithm with complexity O(N) (where N is the number of pixels in one image) using wavelet
filters is proposed to estimate dense optical flow from two frames. Hierarchical image representation by
wavelet decomposition is integrated with differential techniques in a new multiscale framework. It is shown
that if a compactly supported wavelet basis with one vanishing moment is carefully selected, hierarchical im-
age, first-order derivative, and corner representations can be obtained from the wavelet decomposition. On
the basis of this result, three of the four components of the wavelet decomposition are employed to estimate
dense optical flow with use of only two frames. This overcomes the ‘‘flattening-out’’ problem in traditional
pyramid methods, which produce large errors when low-texture regions become flat at coarse levels as a result
of blurring. A two-dimensional affine motion model is used to formulate the optical flow problem as a linear
system, with all resolutions simultaneously (i.e., coarse-and-fine) rather than the traditional coarse-to-fine ap-
proach, which unavoidably propagates errors from the coarse level. This not only helps to improve the accu-
racy but also makes the hardware implementation of our algorithm simple. Experiments on different types of
image sequences, together with quantitative and qualitative comparisons with several other optical flow meth-
ods, are given to demonstrate the effectiveness and the robustness of our algorithm. © 2003 Optical Society
of America

OCIS codes: 100.2000, 100.2960, 150.4620.
1. INTRODUCTION
Research on optical flow, a concept originated by Gibson,1

has progressed for more than 30 years. Accurate optical
flow estimation is critical to many central applications in
computer vision,2 such as structure from motion,3 motion
detection,4 locating the focus of expansion,5 guiding an ob-
server’s heading direction,6 segmenting independently
moving objects,7 extracting boundaries,8 and analyzing
medical video.9 Psychophysical experiments on human
subjects reveal that the first stage of processing in the hu-
man visual system is estimation of the motion field.10,11

Many methods of flow estimation have been proposed
in the literature. Barron et al.12 gave an empirical com-
parison of optical flow estimation techniques up to 1994.
The methods were roughly divided into four categories:

1. Differential techniques. This approach is essen-
tially based on the constant-intensity constraint. It com-
putes the optical flow from spatiotemporal derivatives of
the image intensity or after (low-pass, bandpass, etc.) fil-
tering. Sobey and Srinivasan13,14 extended it to a gener-
alized gradient scheme using six different spatiotemporal
filters in parallel derived from two linearly independent
spatiotemporal kernels. The accuracy of the result de-
pends heavily on accurate estimation of the derivatives.
This requires the image intensity to be differentiable. In
the case of two frames, it means highly oversampled im-
ages or nearly linear intensity structure, which is not al-
ways practical.

2. Region-based matching. This is regarded as a
natural alternative to optical flow estimation12 when the
image sequence is not differentiable as a result of noise,
small numbers of available frames, or undersampling
(aliasing). The optical flow u 5 (ux , uy) is defined as a
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shift that maximizes a similarity measure between image
regions at different times.

3. Energy-based methods. This approach computes
optical flow in the frequency domain by using velocity-
tuned filters. The optical flow is determined by fitting
the spatiotemporal motion energy to a plane in frequency
space. It can be shown that some of the energy-based
methods are equivalent to correlation-based methods and
to certain gradient-based methods.12

4. Phase-based techniques. This approach regards
the optical flow as the phase change in spatiotemporal fil-
ter outputs. Although phase analysis is claimed to be
more stable than its amplitude counterpart, it can also be
unstable when phase singularities occur.

Optical flow techniques proposed since 1994 can be
more or less classified into these four categories. To list a
few: those of Refs. 15–18 are region-based matching,
those of Refs. 19 and 20 are phase-based techniques, that
of Ref. 21 is an energy-based method, and those of Refs.
13, 14, and 22–32 are differential techniques.

Multiframe techniques usually require the image se-
quence to be differentiable along the temporal axis and
thus require either oversampling or large temporal sup-
port. Such techniques have been proposed to improve
the accuracy of optical flow estimation, but relatively few
methods have been proposed to handle situations where
large numbers of consecutive frames are unavailable or
the image sequences are undersampled. These situa-
tions are common in many applications. For instance, in
real-time on-road commercial vehicle applications, optical
flow needs to be quickly estimated as soon as a few (two or
three) image frames are available to control an automatic
driving system before it is too late; in many surveillance
2003 Optical Society of America
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systems, camera sampling rates are low (15 frames/s or
lower); and many other real-time systems do not have
enough computing power or memory to process large
numbers of frames in real time (e.g., real-time video sta-
bilizers). Our method provides an inexpensive way to es-
timate optical flow with reasonably good accuracy.

Multiscale optical flow estimation was introduced by
Weber and Malik.33 This method requires selecting a set
of filters. Convolving images with many filters is rela-
tively computationally expensive. In addition, these fil-
ters need to be chosen so that they are compatible with
each other. To avoid these problems, a wavelet technique
is a good candidate. Mendelsohn et al.34 also proposed a
multiscale coarse-to-fine method under the assumption of
smooth inverse depth map instead of smooth flow field.
They formulated the optical flow problem in a very differ-
ent style involving a projection image system model.

Using wavelets for optical flow estimation is no longer
very new (e.g., Refs. 18 and 20–22). Most previous work
exploits the approximation capability of wavelets and
uses them as basis functions, or exploits the phase rather
than spatial information. Some of these methods require
large temporal support (a long image sequence) to achieve
reasonably good accuracy, or they suffer from relatively
low accuracy. We use wavelets in a very different way;
our approach takes advantage of the wavelet filter prop-
erty and requires only two frames. We propose a low-
complexity algorithm @O(N)# that not only is able to esti-
mate reasonably accurate optical flow but is also suitable
for hardware implementation.

2. BASIC IDEA
A. Problem Formulation
Recent research12–14,22–32 shows that differential tech-
niques seem more accurate in optical flow estimation.
These techniques are based on the well-known constant-
intensity assumption or its extended versions. The as-
sumption is that given an image sequence I(x, t), the in-
tensity changes only because of the motion of the scene,
the camera, or both, i.e.,

I~x, t ! 5 I~x 2 v, 0!, (1)

where x 5 (x, y) is position in the image and v
5 (u, v) is optical flow. The differential version of this
assumption—the gradient constraint equation—can be
expressed as
~Ix~x, t !, Iy~x, t !! • v 1 It~x, t ! 5 0, (2)

where Ix@ y#@t#( • ) is the partial derivative of I(x, t) with
respect to x, y, or t. Note that for each pixel there are two
unknowns but only one equation (known as the aperture
problem); more constraints are needed. In addition, be-
cause image sequences usually have aliasing problems,
Ix , Iy , It need to be carefully handled. It is well-known
that poor numerical differentiation can cause large
errors.12,22,27,35

To handle the aperture problem, a locally constant mo-
tion assumption is widely used. Recent studies (e.g.,
Refs. 27 and 36) show that an affine motion model is more
accurate because its elementary flow fields include more
types of motion, such as translation, rotation, dilation, di-
vergence, shear, and stretch. In our algorithm, we as-
sume that the local optical flow u 5 (u, v) satisfies the
following affine model:

u 5 p1x 1 p2 y 1 p3 , v 5 p4x 1 p5 y 1 p6 . (3)

Therefore six pixels in the neighborhood can uniquely de-
fine the local optical flow. More pixels define an overde-
termined linear system p.

To handle the aliasing problem, smoothing is widely
used. For spatial differentiation, since large support is
always available, accurate estimates are relatively easy
to obtain (e.g., by smoothing using a series-designed first-
order derivative with large support36). Time aliasing is
trickier to handle. When more than two consecutive
frames are available, more methods can be applied, such
as using a differentiation filter with more-than-two-frame
support, using a more accurate statistical error model to
solve the linear system (e.g., total least squares, extended
least squares30), or using basis functions to approximate
the image sequence and then resampling. If only two
frames are available, a multiscale approach is desirable.
At the coarse level, time aliasing is alleviated for veloci-
ties less than 1 pixel/frame.

The traditional multi-scale pyramid has a so-called
‘‘flattening-out’’ problem, which produces high errors
when low-texture regions become flat at coarse levels as a
result of excessive blurring. Though appropriate low-
pass filtering generally improves the numerical differen-
tiation, the excessive blurring wipes out the intensity
changes and thus causes large errors in numerical differ-
entiation, which eventually leads to poor optical flow es-
timation in both space and time. As an example, Figs.
1(a) and 1(b) show one frame of the Yosemite sequence
Fig. 1. Multiscale strategy: (a) one frame of the Yosemite sequence, (b) traditional Gaussian smoothing ( s 5 1.5) and dyadic down-
sampling at level 2, (c) wavelet decomposition at level 2 using biorthogonal wavelets (bior1.3).
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and its coarse scale after traditional Gaussian smoothing
and dyadic downsampling at level 2. The former flattens
out the details and gives rise to a large homogeneous
area, where optical flow is hard to detect.

B. Motivation for Using Wavelets
There are several motivations for using wavelets:

• The wavelet transform has a built-in multiscale
structure.

• The wavelet transform has superior spatial resolu-
tion as well as frequency resolution,37,38 which overcomes
the flattening-out problem.

• The wavelet transform separates point noise from
useful signal, so that noise removal is automatically per-
formed, to some degree, during the wavelet decomposition
at each scale level.

• The biorthogonal/orthogonal and compactly sup-
ported wavelet decomposition has a fast algorithm
@O(N)#.

Figure 1(c) shows the approximation channel of the
wavelet decomposition using biorthogonal spline wavelets
(‘‘bior1.3’’) at level 2. Compared with the result of tradi-
tional Gaussian smoothing and downsampling, it pre-
serves much more detail, with point noise separated into
the diagonal channel (details are in Section 3).

Previously proposed multiscale approaches (e.g., Refs.
18 and 22) usually estimate the optical flow in a coarse-
to-fine manner; i.e., the optical flow is first estimated at a
coarse level, where time aliasing is assumed to be small,
and then the result is propagated to finer levels as initial
guesses. One shortcoming of this approach is that errors
at the coarse level, which can be large at some pixels be-
cause of the lack of information at the coarse level, are
also propagated to the finer levels. Though this can be
compensated to some degree by projecting the results at
the finer levels back to the coarse level and doing some
adjustments, this usually results in slow or even noncon-
verging iteration.

Our multiscale approach is coarse-and-fine rather than
coarse-to-fine; it estimates the optical flow at different
scales simultaneously to avoid error propagation. An-
other alternative to coarse-to-fine was proposed by Weber
and Malik,33 where the estimate was first formed at each
scale and then valid estimates were combined to yield fi-
nal estimates.

Before discussing our method in detail, we will give a
brief review of the wavelet transform and an important
derivation.

3. HIERARCHICAL FIRST-ORDER
DERIVATIVES BY WAVELET
DECOMPOSITION
For the sake of clarity and simplicity, the derivation here
is based on one-dimensional (1-D) continuous wavelets.
The results can be easily extended to higher-dimensional
discrete wavelet transforms (DWTs).

Consider the definition of the wavelet transformation:
~Twavf !~a, b ! 5 ^ f, ca,b& 5
1

Auau
E

2`

1`

f~x !cS x 2 b

a D dx,

(4)

where c ( • ) stands for the complex conjugate and c (•)
P L2(R) is compactly supported and satisfies the admis-
sibility condition:

Cc 5 E
2`

1` uĉ ~v!u2

uvu
dv , `. (5)

It can be proved37 that the admissibility condition can be
satisfied only if

E
2`

1`

c ~x !dx 5 0. (6)

Define ha
0(t) 5 *2`

t c (x/a)dx. From Eq. (6), we have

lim
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ha
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Furthermore, define ha
1(t) as follows:

ha
1~t ! 5 E

2`

t

ha
0~x !dx 5 xha

0~x !u2`
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Recalling that c (•) is compactly supported, we have

lim
t→2`

ha
1~t ! 5 0,

lim
t→1`

ha
1~t ! 5 2E

2`

1`

xcS x

a D dx 5 2a2E
2`

1`

xc ~x !dx.

(9)

For the wavelet function with n vanishing moments, re-
peatedly using Eq. (9), we get

E
2`

1`

ha
n21~x !dx 5 ~21 !n

an11

n!
E

2`

1`

xnc ~x !dx Þ 0.

(10)

Thus, for the wavelet function c (x) P L2(R) with n van-
ishing moments, we define a function

h~t ! 5 cE
2`

t E
2`

t1

¯E
2`

tn22

c ~x !dxdtn22¯dt1dt, (11)

where c is a constant, so that

E
2`

1`

h~x !dx 5 1. (12)

Equations (5) and (6) guarantee that h(t) also satisfies

lim
t→2`

h~t ! 5 lim
t→1`

h~t ! 5 0. (13)

We call a function that satisfies Eqs. (12) and (13) a
smoothing function.

In the case of a real signal, we have
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Fig. 2. Wavelet decomposition: a, approximation channel; h, v, horizontal and vertical channels; d, diagonal channel.
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That is, the wavelet transform obtained by using the com-
pactly supported wavelet function c (x) P L2(R) with n
vanishing moments can be regarded as the nth derivative
of the signal after a scaled smoothing operation is per-
formed. When n 5 1, we get the hierarchical first de-
rivatives that we need.

In the discrete case, the coefficients of the wavelet ex-
pansion of a signal constitute the DWT.37 The above re-
sult holds for the DWT if we replace integration with
summation and differentiation with differencing. The
1-D DWT can be easily extended to two-dimensional by
tensor product37:

ca~x, y ! 5 f~x !f~ y !, ch~x, y ! 5 f~x !c ~y !,

cv~x, y ! 5 c ~x !f~ y !, cd~x, y ! 5 c ~x !c ~y !,
(15)

where ca(x, y) is the two-dimensional (2-D) scaling func-
tion and ch,v,d(x, y) are the corresponding 2-D wavelets.
Applying these functions (whose compactly supported
wavelet base has n vanishing moments) to a 2-D signal,
we get four channels of decomposed signals:

• Channel a: the approximation channel, a coarse-
scale version of the original signal.

• Channels h and v: the horizontal and vertical
channels, which are the nth derivatives (when using a
compactly supported wavelet base with n vanishing mo-
ments) of the original signal in the two orientations after
a smoothing operation. These two channels can be com-
bined to get nth-derivative vectors.

• Channel d: the diagonal channel, which includes
nth ‘‘corners’’ in the original signal.

These operations can be applied to channel a recursively
to get a hierarchical signal representation (see Fig. 2).

The above derivation gives an important result: If we
carefully select a compactly supported wavelet base with
one vanishing moment, e.g., ‘‘Haar’’ wavelets, we get a
hierarchical signal and its first-order derivatives from the
wavelet decomposition. The superior frequency and spa-
tial resolutions of the wavelet transform37,38 guarantee
that details are largely preserved at the coarse level, so
that the first-order derivatives at each scale are accurate.
Thus we obtain the hierarchical gradient constraint equa-
tions (2) without a serious flattening-out problem. Here
the hierarchical time derivatives (It’s), which have less
time aliasing at the coarse level, can be easily calculated
by taking first-order forward differences at each scale.

4. COARSE-AND-FINE OPTICAL FLOW
ESTIMATION
Our method is formulated in a coarse-and-fine manner to
avoid the error propagation problem in the traditional
coarse-to-fine approach. Let the superscript (e.g., l) de-
note the level number (the original image is at level
l 5 0), the first subscript (e.g., x, y, and t) denote the di-
rection of the first-order derivative or wavelet decomposi-
tion channel (e.g., a, h, v, and d), and the second subscript
(e.g., k) denote the frame number. For example, Ix@ y#@t#,k

l

is the first-order derivative of the kth frame image inten-
sity in the x@ y#@t# direction at scale level l, Ia,k is the ap-
proximation channel of the kth frame, and Id,k is the di-
agonal channel of the kth frame. The wavelet filter unit
is designed as in Fig. 3. The symbol ‘‘2↓’’ denotes dyadic
downsampling. By selecting the compactly supported
wavelet basis with one vanishing moment, we can get the
hierarchical gradient constraint equations (Fig. 4) with
accurate first-order derivatives at each level.

Because of the dyadic downsampling during the wave-
let decomposition, 1 pixel at the coarse level represents
2 3 2 pixels at the next-finer level. Thus the optical flow
of the pixel at the coarse level is half of the average of the
optical flows of the 2 3 2 pixels at the finer level. In
general, 1 pixel at the coarsest level represents 2L2l

3 2L2l pixels at levels l 5 0, 1,..., L, where L is the
maximum degree of wavelet decomposition. Instead of
estimating the optical flow at the coarsest level and then
propagating the result to the finer level, our method esti-
mates the optical flow at all scale levels simultaneously.

Mathematically, in the m 3 n neighborhood S of the
pixel (xi , yi) in the original image, Eqs. (3) can be rewrit-
ten as

u 5 f~X, Y!p, (16)

where X and Y are x- and y-coordinate matrices and
p 5 ( p1 , p2 , p3 , p4 , p5 , p6)T is the vector of affine
model parameters. Function f( • , • ) is defined as fol-
lows:
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f~X, Y! 5 F ¯ ¯

xi yi 1 0 0 0

0 0 0 xi yi 1

¯ ¯

G T

, (17)

where (xi , yi) P S, i 5 1, 2,..., M, and M 5 m 3 n. At
level l, m 5 n 5 2L2l.

Substituting Eq. (16) into Eq. (2), we have

Ix • f~X, Y!p 5 2It, (18)

where

Ix 5 F Ix1
Iy1 0 0 ¯ 0 0

] ] ] ] � 0 0

0 0 0 0 ¯ IxM
IyM

G , (19)

It 5 ~It1
, It2

,..., ItM
!T. (20)

Let D(•) be the dyadic downsampling function and W
be the averaging operator. Recalling that the superscript
l denotes the level number, we have the hierarchical gra-
dient constraint functions

Alp 5 2It
l , (21)

where

Al 5 Ix
l
• f~Xl, Yl!. (22)

Here Xl and Yl are iteratively defined by

Fig. 3. Wavelet filter unit, where LoIDx( y) is the decomposition
low-pass filter and HiIDx( y) is the decomposition high-pass filter.
See the text for details.
Xl 5 D~W – Xl21!, X0 5 X,

Yl 5 D~W – Yl21!, Y0 5 Y. (23)

Therefore each pixel at level l corresponds to 2 3 2 pixels
at level l 2 1. For L degrees of wavelet decomposition,
this corresponds to 2L 3 2L pixels in the original images.
Their affine parameters can be estimated by the following
linear equations, integrating the gradient constraint at
all scale levels:

Ap 5 b, (24)

where

A 5 @A0, A1,..., AL#T, b 5 2~It
0, It

1,..., It
L!T. (25)

When the wavelet basis is symmetric, the alignment of
levels is trivial. Once the affine model parameter p is
computed by solving Eq. (24) in the sense of least squares,
the optical flow of the central 2 3 2 pixels of the
2L 3 2L neighborhood in the original image can be esti-
mated by using Eqs. (3). This is illustrated in Fig. 5.

5. ALGORITHM COMPLEXITY ANALYSIS
A. Algorithm
The algorithm for fast optical flow estimation is summa-
rized below (the framework of the algorithm is illustrated
in Fig. 5):

FAST –OF –ESTIMATION~I1 , I2!

I1 : Image frame t.

I2 : Image frame t 1 1.

The following two steps need to be precomputed only
once, and the results are stored for future use:

• Preconstruct matrices f(Xl, Yl), l 5 0,1,...,L, from
Eq. (17).

• Preconstruct matrix f(X, Y) 5 @ f(X0, Y0), f(X1,
Y1),..., f(XL, YL)]T.

1. Ia,1
0 ← I1 , Ia,2

0 ← I2 .
2. L ← maximum number of decompositions. The

determination of L is discussed in Subsection 5.B.
3. Decompose the two consecutive image frames I1 ,

I2 , by using some compactly supported wavelet basis with
Fig. 4. Hierarchical coarse-and-fine gradient constraint.
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Fig. 5. Hierarchical coarse-and-fine optical flow estimation.
one vanishing moment (e.g., biorthogonal spline wavelets:
bior1.3) up to level L to get hierarchical images Ia,1

l , Ia,2
l

and their first-order spatial derivatives Ix,1
l , Iy,1

l , l 5 1,
2,..., L. This can be done by the fast algorithm described
in Fig. 3 and Ref. 38.

4. Compute the first-order spatial derivatives Ix,1
0 , Iy,1

0

of the original images (l 5 0).
5. Compute the first-order temporal derivatives at

each level l by forward differentiation: It,1
l 5 Ia,2

l

2 Ia,1
l , l 5 0, 1,..., L.

6. for each 2 3 2 pixels do
7. Construct spatial derivative matrices Ix

l [Eq. (19)]
and temporal derivative vectors It

l [Eq. (20)] for each level
l 5 0, 1, 2,..., L.

8. Compute matrix Al from Eq. (22).
9. Construct the linear system in Eq. (24) and solve it

in the sense of least squares to get the affine model pa-
rameters p.

10. Compute the optical flow by using Eqs. (3).
11. end for
12. Output the optical flow.

B. Algorithm Complexity
The value of the maximum number of wavelet levels L is
determined by both the motion model and the maximum
optical flow magnitude. On the one hand, linear system

(24) has (4L11 2 1)/3 equations and six unknowns; this
requires (4L11 2 1)/3 > 6⇒L > 2. On the other hand,
if the maximum optical flow magnitude Vmax can be esti-
mated, it can help to determine the upper bound of L. At
level

L 5 @log2 Vmax#, (26)
the optical flow is already less than 1 pixel/frame (and
thus has less time aliasing). Usually L < 5; too deep a
decomposition causes the coarsest level to contain too
little useful information.

Assume that one frame has N pixels. It is then obvi-
ous from the wavelet transform structure that the com-
plexity is O(N). The following is the algorithm efficiency
in terms of flops per pixel, assuming that the standard
normal-equations method39 is used to give the least-
squares solution for the linear system:

where D is the length of the wavelet filters. Table 1 lists
the algorithm efficiency for the compactly supported bior-
thogonal spline wavelet filters bior1.3, whose filter length
is D 5 6. As a comparison, the performance of Magarey
and Kingsburg’s efficient algorithm20 is also given. It
can be observed that most of the flops are consumed by
solving the linear equations.

(27)

Table 1. Algorithm Efficiency with bior1.3
(in Flops per Pixel)

L
Wavelet

Transform
Construct
Matrix A

Solve Linear
Equations

Compute Affine
Optical Flow Total

2 36 207 255
3 42 4 783 8 837
4 45 3089 3144
Magarey’s algorithm (version 1, faster) 234
Magarey’s algorithm (version 2, more accurate) 1618
Bernard’s algorithm (with illumination) 863
Bernard’s algorithm (without illumination) 780
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6. EXPERIMENTS
Compactly supported biorthogonal spline wavelet filters
of order Nr 5 1 and Nd 5 3 (denoted by bior1.3) were
used throughout the experiments because they have one
vanishing moment and are symmetric (so that the shift
problem is avoided):

f low 5
&
16 ~21 1 8 8 1 21 !,

fhigh 5
&
2 ~0 0 21 1 0 0 !. (28)

Unless stated otherwise, all images were spatially
Fig. 6. Synthetic image sequence: row 1, one frame from each sequence; row 2, ground-truth optical flow; row 3, optical flow estimated
by proposed method; row 4, error distribution.
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Table 2. Translating Tree Results (Frame 20)

Technique
Frames

Used
Average

Error
Standard
Deviation

Density
(%)

Our algorithm 2 3.67° 2.18° 100
Horn and Schunck (original) 2 38.72° 27.67° 100
Anandan 2 4.54° 3.10° 100
Singh (n 5 2, v52) 2 1.25° 3.29° 100
Heeger (level 0) 2 8.10° 12.30° 77.9
Heeger (level 1) 2 4.53° 2.14° 57.8
Magarey (version 1, faster) 2 2.31° — 100
Magarey (version 2, more accurate) 2 1.32° — 100
Bernard 2 0.78° — 99.30
Srinivasen and Chellappa 2 0.61° 0.26° 100
Horn and Schunck (modified) 7–13 2.02° 2.27° 100
Nagel 7–24 2.44° 3.06° 100
Liu et al. 11 0.66° 0.83° 100
Weber and Malik 10 0.49° 0.35° 96.8

Table 3. Diverging Tree Results (Frame 20)

Technique
Frames

Used
Average

Error
Standard
Deviation

Density
(%)

Our algorithm 2 1.67° 0.88° 100
Horn and Schunck (original) 2 12.02° 11.72° 100
Anandan 2 7.64° 4.96 100
Singh (step 2, n 5 2, v 5 2) 2 8.60° 4.78° 100
Heeger (level 0) 2 4.95° 3.09° 73.8
Magarey (version 1, faster) 2 3.92° — 100
Magarey (version 2, more accurate) 2 3.12° — 100
Bernard 2 ;1.2 times higher than Heeger, etc.
Srinivasen and Chellappa 2 2.94° 1.64 100
Horn and Schunck (modified) 7–13 2.55° 3.67° 100
Nagel 7–24 2.94° 3.23° 100
Liu et al. 11 1.86° 1.35° 100
Weber and Malik 10 3.18° 2.50° 88.6

Table 4. Yosemite Results (Frame 9)

Technique
Frames

Used
Average

Error
Standard
Deviation

Density
(%)

Our algorithm 2 8.43° 10.12° 100
Horn and Schunck (original) 2 32.43° 30.28° 100
Anandan 2 15.84° 13.46° 100
Singh (step 2, n 5 2, v52) 2 13.16° 12.07° 100
Heeger (level 0) 2 20.89° 34.26° 64.2
Magarey (version 1, faster) 2 7.70° — 100
Magarey (version 2, more accurate) 2 6.20° — 100
Bernard 2 6.5° — 96.50
Srinivasen and Chellappa 2 8.94° 10.63° 100
Horn and Schunck (modified) 7–13 11.26° 16.41° 100
Nagel 7–24 11.71° 10.59° 100
Liu et al. 11 7.52° 13.72° 100
Weber and Malik 10 4.31° 8.66° 64.2
smoothed by the Gaussian filter with standard deviation
s 5 2 before further processing. The total number of
wavelet decompositions for each sequence is 5. The first-
order derivatives of the images at level 0 (the original im-
ages) are computed through the following series-designed
filter:
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2520
~22 25 2150 600 22100 0 2100 2600 150 225 2 !. (29)
In the computation of errors, pixels out of the filter sup-
port were not counted, since derivatives at such pixels
were not accurate anyway.

A. Synthetic Image Sequences
Three synthetic image sequences were used to test our al-
gorithm quantitatively and compare it with other optical
flow techniques:

• Translating Tree [Fig. 6(1)]. This sequence simu-
lates translational camera motion along the X axis paral-
lel to a textured planar surface. The velocities are be-
tween 1.73 and 2.26 pixels/frame.

• Diverging Tree [Fig. 6(2)]. This sequence simulates
a synthetic camera moving toward a planar image of a
tree. The speeds range from 0 in the middle (at the focus
of expansion) to 1.4 pixels/frame on the left and 2.0 pixels/
frame on the right.

• Yosemite [Fig. 6(3)]. This is a more complex test se-
quence with a wide range of velocities, occluding edges,
and severe aliasing in the lower portions of the images.
Fig. 7. Real sequences: (1) SRI Trees, (2) NASA, (3) Rubik Cube, (4) Hamburg Taxi.
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The clouds translate to the right at a speed of 2 pixels/
frame with illumination changes. The velocity of the
lower-left part is approximately 4 pixels/frame.

Following Refs. 12 and 40, the angular error between
the correct flow vc 5 (vcx

, vcy
, 1)T and an estimate ve

5 (vex
, vey

, 1)T is calculated:

error 5 arccosS vc

ivci2
•

ve

ivei2
D . (30)

The advantage of using the angular error is discussed in
Ref. 12.

Results are shown in Fig. 6. The ground-truth flow
and the error distribution are also shown. It can be ob-
served that errors mainly occur on the boundary of the
scene. For the Yosemite sequence, errors also occur
where the illumination changes (the cloud area) and the
flow has large discontinuities. Error statistics, including
mean and standard deviation, are listed in Tables 2–4.
For comparison, results from other two-frame methods in
Refs. 12 and 22 are given. Some multiframe dense opti-
cal flow results in Refs. 12 and 27 are also given.

In general, our flow estimates are accurate and have
high density. For these image sequences, our algorithm
outperforms most two-frame techniques listed (except
Singh’s method for the Translating Tree sequence), and
even some of the multiframe methods in Refs. 12 and 27
for the Diverging Tree and Yosemite sequences, as re-
gards both flow accuracy and density.

B. Real Image Sequences
For comparison with other optical flow
techniques,12,18,22,24,27 four widely used image sequences
were selected to test our algorithm:

• SRI Trees (translation dominated); see Fig. 7(1). In
this sequence, the camera translates parallel to the
ground plane. This sequence is very challenging because
of poor resolution, considerable occlusion, and low
contrast.12 The maximum velocity is approximately 2
pixels/frame.

• NASA (dilation dominated); see Fig. 7(2). This se-
quence was obtained by moving the camera along the line
of sight toward the cola can near the center of the image.

• Rubik Cube (rotation dominated); see Fig. 7(3).
The Rubik cube is rotating counterclockwise on a turn-
table.

• Hamburg Taxi (translation and rotation); see Fig.
7(4). There are three obvious objects moving indepen-
dently: the taxi turning at the corner, a car at the lower
left driving from left to right, and a van at the lower right
driving from right to left.

As a comparison, we show flow results for both our algo-
rithm and the Anandan algorithm.12 The Anandan algo-
rithm is a two-frame Laplacian pyramid and a coarse-to-
fine sum-of-squared-difference-based method, while our
algorithm is a two-frame wavelet pyramid and coarse-
and-fine differentiation-based approach.

The overall results obtained from our algorithm are
very reasonable and appear to be much more accurate
than the results of the two-frame techniques in Ref. 12
and other recently published papers (e.g., Ref. 22). Even
compared with the multiframe techniques in Ref. 12 and
some other recently published papers (e.g., Refs. 18, 24,
and 27), our results appear to be better or at least no
worse. Even in sequences with very large rotation, dila-
tion, and shadow, our algorithm still produces very rea-
sonable optical flow estimates.

7. CONCLUSIONS
We have presented a wavelet decomposition approach to
compute multiscale optical flow by using only two image
frames. Our algorithm is based on the fact that if a com-
pactly supported wavelet basis with one vanishing mo-
ment is carefully selected, we can get hierarchical images,
first-order derivatives, and corners from the wavelet de-
composition. With the superior space as well as fre-
quency resolution of the wavelet filters, the ‘‘flattening-
out’’ problem is well handled. The differential technique
is thus formulated in a hierarchical framework with an
affine model. The aperture and time-aliasing problems
are circumvented in the multiscale hierarchy. Optical
flow is estimated in a coarse-and-fine manner, which over-
comes the error propagation problem in the traditional
coarse-to-fine method. Experiments demonstrate that
our algorithm is accurate and robust. The two-frame es-
timate and the relatively low computational complexity of
our algorithm could be exploited for real-time accurate
optical flow estimation.
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