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ABSTRACT 

In this paper, we present a scheme for vehicle detection and 
tracking in video. The proposed method effectively com- 
bines statistical knowledge about the class of vehicles with 
motion information. The unknown distribution of the image 
patterns of vehicles is approximately modeled using higher- 
order statistical information derived from sample images. Sta- 
tistical information about the background is learnt ‘on the 
fly’. A motion detector identifies regions of activity. The 
classifier uses a higher-order statistical closeness measure to 
determine which of the objects actually correspond to mov- 
ing vehicles. The tracking module uses position co-ordinates 
and difference measurement values for correspondence. Re- 
sults on real video sequences are given. 

1. INTRODUCTION 

Detection of vehicles in images represents an important step 
towards achieving automated roadway monitoring capabili- 
ties. It can also be used for monitoring activities in parking 
lots. The challenge lies in being able to reliably and quickly 
detect multiple small objects of interest against a cluttered 
background which usually consists of road signs, trees and 
buildings. 

In recent works, the concept of site-model-based image 
exploitation has been used for the detection of prespecified 
vehicles in designated areas as well as the detection of global 
vehicle configurationsin aerial imagery [ 1,2]. The approach 
consists of maintaining a geometric functional model of the 
site of interest. Before an acquired image can be processed, 
it needs to be registered with respect to the site. In [3], an at- 
tentional mechanism based on the characterization and anal- 
ysis of spectral signatures using context information is de- 
scribed. Moon et al. [4] use a simple geometric edge model 
in conjunction with contextual information for detecting ve- 
hicles from aerial images of parking areas. However, the 
method is sensitive to low illumination and/or acquisition 
angles. There is an increasing interest in the vision commu- 
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nity to detect and track vehicles from video data. These ap- 
proaches usually extract foreground objects from the back- 
ground using frame differencing or background subtraction. 
The foreground objects are then classified as vehicles or oth- 
erwise using some matching criterion such as the Hausdorff 
measure [ 5 ]  or trained neural networks [6,7]. 

We present a new scheme that combines statistical knowl- 
edge of the ‘vehicle class’ with spatio-temporal information 
for classification and tracking. The unknown distribution of 
the image patterns of vehicles is approximately modeled by 
learning the higher-order statistics (HOS) of the ‘vehicle class’ 
from training images. To reduce false alarms, statistical prop- 
erties of the background scene are learnt from the given test 
video sequence. A motion detector outputs regions of activ- 
ity while the classifier uses an HOS-based closeness mea- 
sure with very good discriminating capability to determine 
which of the moving objects actually correspond to vehicles 
in motion. The tracker uses position co-ordinates and HOS- 
based difference measurement values to establish correspon- 
dence across frames. When tested on real video sequences, 
the performance of the method is found to be very good. 

2. DETECTION AND TRACKING 

The proposed vehicle detection and tracking system is com- 
prised of the following modules: statistical learning and pa- 
rameter estimation, moving object segmentation, object dis- 
crimination, and tracking. We now discuss each of these mod- 
ules in brief. 

2.1. Statistical Learning and Parameter Estimation 

Statistical information about the ‘vehicle class’ is derived 
off-line using a training set of vehicle image patterns. Let a 
random vector X of length N represent the class of vehicle 
image patterns and a: be a lexicographically ordered sample 
image pattern from this class. Since the conditional density 
function for this class is unlikely to be well-modeled by a 
simple Gaussian fit, the unknown probability density func- 
tion (p.d.0 is approximated up to its mth order joint moment 
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using a finite-order HOS-based expansion which is given by 

Here E is the expectation operator with respect to f(.) while 
En(.) is a vector whose elements are given by the product 
(nLl w) for all permutations of ~ c i ,  i = 1,. . . N ,  

such that ELl Ici = n. The term H k , ( ~ i )  is the Hermite 
polynomial of order Ici which is given by 

Equation (1) uses higher-order statistics (the terms inside the 
summation) to get a better approximation to the unknown 
p.d.f and to capture deviations from Gaussianity. Details of 
the derivation can be found in [8]. The distribution of X is 
modeled by fitting the data samples of vehicles with six clus- 
ters. The idea of using multi-dimensional clusters to model 
the p.d.f may be traced back to [9, IO]. 

Because the underlying distributionis expected to be non- 
Gaussian, an HOS-based k-means clustering algorithmis used 
on the training set to derive information about the mean, the 
covariance and the higher-order statistics of the ‘vehicle class’. 
Clustering is done using an HOS-based closeness measure 
which is given by - log f(g) where f(g) is expressed as in 
(1). The higher-order information contained in (1) gives an 
enhanced discriminating capability to the closeness measure 
as compared to Euclidean and Mahalanobis distances which 
use only first and second-order statistics [ll,  121. 

2.2. Moving Object Segmentation 

For a stationary camera, foreground objects are segmented 
from the background by frame differencing followed by thresh- 
olding. Simple thresholding can result in partial extraction 
of moving objects. If the threshold is too low, camera noise 
and shadows will produce spurious objects; whereas, if the 
threshold is too high, some portions of the objects in the scene 
will fail to be separated from the background. Hence, mor- 
phological operations are used to reconstruct incomplete tar- 
gets and to remove extraneous noise. The net result is a bi- 
nary image with the areas of motion identified. If the camera 
is in motion, then the image frames are first stabilized us- 
ing a recently developed image stabilization algorithm [ 131. 
Thresholding and morphological operations are carried out 
on the stabilized frames to detect the motion regions. 

2.3. Object Discrimination 

The task of this module is to determine which of the mov- 
ing objects actually correspond to vehicles in motion. This 

is achieved by background learning, image search and clas- 
sification. 

2.3.1. Background Leaming 

Even though the HOS-based closeness measure has good dis- 
criminating capability, in the absence of any information about 
the background scene, there are many naturally occurring back- 
ground patterns in the real world that could well be confused 
with the image patterns of vehicles. This can result in an un- 
acceptable number of false detections. For a given image se- 
quence, statistical information of the background scene can 
be used to enhance vehicle detection capability. Knowledge 
about the background scene helps to relax the detection thresh- 
old which in turn leads to an improvement in the vehicle de- 
tection rate while simultaneously keeping down the number 
of false matches. 

Given an image frame and the knowledge-base of the ve- 
hicle class as derived in Section 2.1, the statistical parame- 
ters of the background (mean, covariance and HOS) are learnt 
as follows. The test image frame is scanned for square patches 
that are (most likely) not vehicles. The difference measure- 
ment of a test patch with respect to the i th vehicle cluster 
is computed as 

If the minimum value of d $ ,  i = 1,2,  . . . ,6 ,  is greater than a 
suitably chosen thresholdTb, then the test patch is treated as 
a non-vehicle pattern. Since the background usually consti- 
tutes a major portion of the test image, one can obtain with 
good confidence, sufficient number of samples that are not 
vehicles by choosing a reasonably large value for Tb. The 
non-vehicle patterns are also distributed into six clusters us- 
ing HOS-based k-means clustering and the statistical param- 
eters corresponding to each of these clusters are estimated. 
For simplicity, the background statistics are assumed to be 
constant across the frames. 

2.3.2. Image Search 

Having learnt the statistical information of the background 
scene, we search for the presence of vehicles in and around 
the motion regions detected by the segmentation module. A 
window is chosen about each of these regions and searched 
for possible target at all points and across different scales to 
account for any variations in size. For every test pattern 1, a 
vector of HOS-based difference measurements is computed 
with respect to each of the 12 clusters; the first 6 clusters cor- 
respond to the class of vehicles while the other 6 are used to 
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model the background. The minimum distance value and the 
corresponding cluster are obtained as 

2.3.3. Classijication 

The procedure for pattern classification is as follows. 

Based on the minimum difference measurements ob- 
tained from the search step, a set A of test patterns is 
generated such that g E A if the minimum difference 
value of g is less than an optimally selected thresh- 
old TO and the cluster corresponding to the minimum 
value belongs to the set of vehicle clusters. Equiva- 
lently, g E A if 

d, - < TO and 1 5 i, - 5 6 ,  

where d, - and i, - are derived from (2) and (3), respec- 
tivel y. 

If the set A is non-empty, then that test pattern E* which 
has the smallest difference measurement value among 
the patterns in A is declared as the detected vehicle 
pattern within that motion region. The centroid of the 
detected vehicle pattern E* along with the average of 
the HOS-based difference measurement values (which 
is given by & djr.) - are passed onto the tracking 
module. 

12 ’ 

0 If the set A is empty, then it is decided that the moving 
object is not a vehicle. 

The above steps are repeated for every motion region 
to check for the presence of a vehicle. 

2.4. Tracking 

Most tracking systems are based on either the Kalman filter 
or the correlation technique. In our scheme, the centroidal 
locations in conjunction with the average of the HOS-based 
difference measurement values of the detected vehicle pat- 
tern are used for tracking. 

Step 1. The centroid corresponding to a detected foreground 
region is compared with the centroids of the objects 
detected in the earlier frame using the simple Euclidean 
norm. 

Step 2. If the difference in the displacements of the centroids 
is less than a certain value, then correspondence is es- 
tablished (assuming that the frame rate is high enough). 

Step 3. If there are multiple foreground regions that are likely 
candidates for match with an object in the previous 
frame, then the average of the HOS-based difference 
measurement values is used to establish a unique cor- 
respondence. This can be looked upon as matching 
using higher-order statistical correlation. 

The tracking method described above works satisfacto- 
rily as long as the spatial positioning of the vehicles is not 
very complex. Velocity estimates could be computed for the 
motion regions and used together with the locations of the 
centroids for improved performance. 

3. EXPERIMENTAL RESULTS 

In this section, we demonstrate the performance of the pro- 
posed HOS-based vehicle detection and tracking system in 
natural real imagery against acluttered background. The train- 
ing set consisted of about 500 grey-scale patterns of vehicles 
(cars here), each of dimension 16 x 16 pixels. The method 
was then tested on real image sequences of vehicular activ- 
ity on roadways captured with a moving camera. The train- 
ing set was distinct from the test set. As a compromise be- 
tween accuracy of representation and computational com- 
plexity, we chose m = 3 in (1) for our experiments. 

Fig. 1. Stabilized image frames of a moving car sequence 
captured with a moving camera. Detection and tracking re- 
sults correspond to frame (a) 20, (b) 25, (c) 35, and (d) 43. 

Figures 1 and 2 show the output results corresponding to 
some of the stabilized frames for two different car image se- 
quences. Note that the background is very different for the 
two cases. For computational speedup, test patterns were 
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evaluated every fourth pixel along the rows as well as the 
columns. Hence, the boxes are sometimes not exactly cen- 
tered about the target. Note that the vehicles are successfully 
detected and tracked in each of the frames, despite the pres- 
ence of heavy clutter. Even non-frontal views are detected. 
The potential of the HOS-based scheme for detection and 
tracking is quite evident from these results. 

Fig. 2. Stabilized images for the second car sequence. Re- 
sults corresponding to frames (a) 1, (b) 6, (c) 22, and (d) 34 
are shown here. 

4. CONCLUSIONS 

We have described a new scheme for vehicle detection and 
tracking in video. The method effectively combines higher- 
order statistical information about the image patterns of ve- 
hicles with motion information for classification and track- 
ing. The system successfully detects and tracks vehicles, even 
against complex backgrounds. The method is also reason- 
ably robust to orientation, changes in scale, and lightingcon- 
ditions. We are currently working on best-view selection and 
automatic detection of change in background to adaptively 
update statistical information about the background scene. 
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