
LBSC 690: Information Technology
Lecture 08

Structured data and databases

William Webber
CIS, University of Maryland

Spring semester, 2013



Section 1

Databases



Data



Schema



Interfaces



Systems



Section 2

Structured data



Information without structure

Jane Doe (student id 1234-5678) is a student of
LBSC 690, “Information Technology”. taught by
Doug Oard. Her student id is 1234-5678. Her fi-
nal mark for the subject is 87.

Information about an LBSC 690 student, presented in an
“unstructured” way



Imposing structure upon information

Property Value

Name Jane Doe
Student id 1234-5678
Subject code LBSC 690
Subject name Information Technology
Mark 87
Instructor Doug Oard

◮ Organize information into “property : value” pairs
◮ Often many choices about how to partition data into

properties
◮ Not all data can be structured in this way
◮ Structure is something we impose on information



Data tables

Name Student Subject Subject
id code name Mark Instructor

Jane Doe 1234-5678 LBSC 690 Information Technology 87 Doug Oard
John Dee 2233-4455 LBSC 690 Information Technology 75 Doug Oard
Jane Doe 1234-5678 LBSC 771 Records Management 76 Adam Adamson
John Dee 2233-4455 LBSC 601 Information Retrieval 52 Doug Oard

◮ Where structure is common to many entities, can be
organized as a table.

◮ Each row of table corresponds to an entity or record.
◮ Each column corresponds to a property or field.
◮ Each cell gives the entity’s value for that field.

◮ These (spreadsheet-like) tables are at the heart of
databases.



Typing of fields
Property Type Constraint

Name String Required; Maximum 128 Characters
Date of birth Date-Time
Student id String Required; Exactly 9 Characters
Subject code String Required; Exactly 8 Characters
Subject name String Maximum 64 Characters
Mark Integer
Instructor String Maximum 128 Characters

◮ The fields can be assigned types and constraints
◮ This ensures that (for instance) words are not entered into

a field that should hold numbers
◮ It also allows us to perform type-specific operations (for

instance, find the amount of time between two dates)
◮ Properties, types, and constraints constitute the schema of

the table



Record keys and indexes

Name * Student * Subject Subject
id code name Mark Instructor

Jane Doe 1234-5678 LBSC 690 Information Technology 87 Doug Oard
John Dee 2233-4455 LBSC 690 Information Technology 75 Doug Oard
Jane Doe 1234-5678 LBSC 771 Records Management 76 Adam Adamson
John Dee 2233-4455 LBSC 601 Information Retrieval 52 Doug Oard

◮ Key is a field or set of fields that uniquely identify a record
◮ Keys (and other fields) may be indexed to quickly look up

records (matters when we have millions of records)



Design choices and levels of granularity

Property Example

Name Jane Doe

Property Example

Given Name Jane
Family Name Doe

Property Example

Given Name Jane
Initials J.
Family Name Doe
Title Ms.
Nick Name Jay

◮ Different levels of granularity are possible
◮ Generally, more granular is better, but you can go

overboard
◮ Also, choices about representation (states as codes?

names?)



Designing a single-table database

The library director asks you to create a database to record a
list of “Friends of the Library”. The director wants to record:

◮ Name and contact information
◮ Age, gender, and ethnicity (optional)
◮ Total amount of donations

Your tasks:

◮ Come up with a schema (a list of typed properties) for the
database

◮ What will be the key?
◮ Has the director missed any fields you think should be

there?



Section 3

Relational data



Repeated information

Name * Student * Subject Subject
id code name Mark Instructor

Jane Doe 1234-5678 LBSC 690 Information Technology 87 Doug Oard
John Dee 2233-4455 LBSC 690 Information Technology 75 Doug Oard
Jane Doe 1234-5678 LBSC 771 Records Management 76 Adam Adamson
John Dee 2233-4455 LBSC 601 Information Retrieval 52 Doug Oard

Note that in the above database, we have repeated information
about courses. This leads to several problems:

◮ Wastes space in the database
◮ Requires more data entry
◮ Leads to inconsistencies if information is modified



Compound entities

Field Example value

Name Jane Doe
Student id 1234-5678
Subject code LBSC 690
Subject name Information Technology
Mark 87
Instructor Doug Oard

◮ The problem is that our table is really a compound of
(actually more than) two distinct entities

◮ Student
◮ Subject

◮ Also, we don’t separately store information about a class.
◮ What happens if there are no students enrolled in a class?



Decomposition

Field Type Properties

Student id Character Primary Key
Name Character
Mark Integer
Subject ???

Table: Student

Field Type Properties

Code Character Primary Key
Name Character
Instructor Character

Table: Subject

◮ Separate into two tables or entities
◮ One for student
◮ The other for subject

◮ But now how to mark which class a student is enrolled in?



Foreign key

Field Type Properties

Student id Character Primary Key
Name Character
Mark Integer
Subject code Character Foreign Key → Sub-

ject(Code)

Table: Student

Field Type Properties

Code Character Primary Key
Name Character
Instructor Character

Table: Subject

◮ Subjects are identified by their codes (their primary key)
◮ We place the subject code into the Student table to say

which subject the student is taking
◮ This is known as a foreign key



Splitting into two tables
Student
Student Name Subject Subject
id code name Mark Instructor
1234-5678 Jane Doe LBSC 690 Info. Tech. 87 Doug Oard
2233-4455 John Dee LBSC 690 Info. Tech. 75 Doug Oard
1234-5678 Jane Doe LBSC 771 Record Mgmnt 76 Adam Adamson
2233-4455 John Dee LBSC 601 Info. Ret. 52 Doug Oard

Figure: Before

Student
Student Name Subject
id Mark code
1234-5678 Jane Doe 87 LBSC 690
2233-4455 John Dee 75 LBSC 690
1234-5678 Jane Doe 76 LBSC 771
2233-4455 John Dee 52 LBSC 601

Subject
Code Name Instructor
LBSC 690 Info. Tech. Doug Oard
LBSC 771 Record Mgmnt Adam Adamson
LBSC 601 Info. Ret. William Webber

Figure: After

◮ Redundancy of subject information removed.
◮ Subject code acts as foreign key – primay key link



Further decomposition

Field Type Properties

Student id Character Primary Key
Name Character
Mark Integer
Subject code Character Foreign Key → Sub-

ject(Code)

Table: Student

Field Type Properties

Code Character Primary Key
Name Character
Instructor Character

Table: Subject

We still have redundancy in our schema design:

◮ Where is it?
◮ Improve the design so as to remove the redundancy



Joins

Student
Student Subject
id Mark code
1234-5678 87 LBSC 690
2233-4455 75 LBSC 690
1234-5678 76 LBSC 771
2233-4455 52 LBSC 601

Table: Student

Subject
Code Name Instructor
LBSC 690 Info. Tech. Doug Oard
LBSC 771 Record Mgmnt Adam Adamson
LBSC 601 Info. Ret. William Webber

Table: Subject

Student JOIN Subject ON subjectcode=code

Join
Student Subject Subject Name Instructor
id Mark code
1234-5678 87 LBSC 690 Info. Tech. Doug Oard
2233-4455 75 LBSC 690 Info. Tech. Doug Oard
1234-5678 76 LBSC 771 Record Mgmnt Adam Adamson
2233-4455 52 LBSC 601 Info. Ret. William Webber

Table: Joined student-subject table

◮ The JOIN operation allows us to reconstruct composite
data as required on demand



Project
Student
Student Subject
id Mark code
1234-5678 87 LBSC 690
2233-4455 75 LBSC 690
1234-5678 76 LBSC 771
2233-4455 52 LBSC 601

Table: Student

SELECT studentID, subjectcode FROM Student

Projected
Student Subject
id code
1234-5678 LBSC 690
2233-4455 LBSC 690
1234-5678 LBSC 771
2233-4455 LBSC 601

Table: Projected table

◮ The SELECT operation allows us to extract only desired
columns

◮ Can be applied to joined tables



Restrict

Student
Student Subject
id Mark code
1234-5678 87 LBSC 690
2233-4455 75 LBSC 690
1234-5678 76 LBSC 771
2233-4455 52 LBSC 601

Table: Student

WHERE subjectcode="LBSC 690"

Student
Student Subject
id Mark code
1234-5678 87 LBSC 690
2233-4455 75 LBSC 690

Table: Student

◮ The WHERE clause allows us to select only rows we are
interested in



Entity-relation diagrams

◮ Diagram relationship between entities during design phase.
◮ Several standards; we’re looking at a simple one.
◮ Each entity represented by box, with (optionally) attributes

of entity listed in box.



Relationships in ERDs

◮ Relationships in ERDs shown by arrow
◮ Arrow points from entity that has reference (here, from the

foreign key attribute), to entity that is referenced
◮ Cardinality of membership shown at connection to entity,

generally either 1 or n (for “many”).
◮ Here, we are asserting that a student can have (be enrolled

in) only one subject, but a subject can be had by (enrol)
many students (a one-to-many relationship).



Further decomposition

◮ Previous slide we said “a student can be enrolled in only
one subject”; however, this is clearly wrong.

◮ The correct statement is:

Definition (Student-subject relationship)
A student can be enrolled in many subjects; a subject can have
many students enrolled in it.

◮ This is a many-to-many-relationship.



Many-to-many relationships

◮ For many-many relationships, we need a separate entity
(table) recording relation.

◮ This separate entity also holds ancillary data that is
common in such relations (here, “mark”).



Further decomposition

Extend our entity-relationship diagram to encode the statement:

◮ Each subject has only one instructor, but an instructor can
teach many subjects



Section 4

RDBMS and interfaces



Database and RDBMS

◮ The database is the stored data and the schema that
describes it

◮ Management of and access to the data (along with other
services) is provided by the (relational) database
management system (RDBMS).



Interfaces to the database

The RDBMS provides several interfaces to the database:

Graphical user interface
◮ Spreadsheet-like views, wizards

CLI, with specialist query language (SQL)
◮ Powerful search, manipulation
◮ Requires specialist knowledge

Programming language API
◮ Wraps SQL in programming constructs
◮ General interface for application

development



RDBMS services

A fully-fledged RDBMS provides a number of other services:

◮ Allow database connections over network (database,
application can run on different computers)

◮ Allow, manage multiple simultaneous database
connections,

◮ Transaction support (allow applications to “lock” tables or
rows) to block or undo conflicting updates

Desktop DBMS frequently do not offer such functionality, and
may only offer a GUI interface. Easy to use, but not extensible
to full application development.



Section 5

Review



Structured data

Name Student Subject Subject
id code name Mark Instructor

Jane Doe 1234-5678 LBSC 690 Information Technology 87 Doug Oard
John Dee 2233-4455 LBSC 690 Information Technology 75 Doug Oard
Jane Doe 1234-5678 LBSC 771 Records Management 76 Adam Adamson
John Dee 2233-4455 LBSC 601 Information Retrieval 52 Doug Oard

◮ Organize information to property : value pairs
◮ Enforce types, constraints, indexes
◮ Single-table database: rows are entities, columns

attributes
◮ Level of granularity



Relational data

Field Type Properties

Student id Character Primary Key
Name Character
Mark Integer
Subject code Character Foreign Key → Sub-

ject(Code)

Table: Student

Field Type Properties

Code Character Primary Key
Name Character
Instructor Character

Table: Subject

◮ Decompose compound entities to avoid redundancy
◮ Use of foreign keys – primary key link to connect records
◮ Join, project, restrict operations



ER diagrams, database systems

◮ ER diagrams: graphical representation of schema
◮ DB systems provide:

◮ various interfaces to database (graphical, command-line,
programmatic)

◮ additional services (concurrent access, integrity
maintenance)



Feedback

On a piece of paper, write (without names):

What was the muddiest point in today’s class?


	Databases
	Structured data
	Relational data
	RDBMS and interfaces
	Review

