

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Multimedia

Week 7 LBSC 690 Information Technology

Agenda

- Questions
- Images
- Video
- Audio
- Streaming
- SMILe
- XML?
- (HCI)

Nothing new...

Georges Seurat, A Sunday Afternoon on the Island of La Grande Jatte

Visual Perception

- Closely spaced dots appear solid
 But irregularities in diagonal lines can stand out
- Any color can be produced from just three – Red, Blue and Green: "additive" primary colors
- High frame rates produce apparent motion
 Smooth motion requires about 24 frames/sec
- Visual acuity varies markedly across features
 Discontinuities easily seen, absolutes less crucial

Basic Image Coding

- Raster of picture elements (pixels)
 - Each pixel has a "color"
 - Binary black/white (1 bit)
 - Grayscale (8 bits)
 - Color (3 colors, 8 bits each)
 - Red, green, blue
- Screen
 - A 1024x768 image requires 2.4 MB
 - So a picture is worth 400,000 words!

Monitor Characteristics

- Technology (CRT, Flat panel)
- Size (15, 17, 19, 21 inch)
 - Measured diagonally
 - For CRT, key figure is "viewable area"
- Resolution
 - 640x480, 800x600, 1024x768, 1280x1024, ...
- Layout (three dot, lines)
- Dot pitch (0.26, 0.28)
- Refresh rate (60, 72, 80 Hz)

Pop Quiz

How many images can a 1 GB SD store?
But mine holds about 500. How?

Compression

- Goal: reduce redundancy
 Send the same information using fewer bits
- Originally developed for fax transmission
 Send high quality documents in short calls
- Two basic strategies:
 - Lossless: can reconstruct exactly
 - Lossy: can't reconstruct, but looks the same

Palette Selection

- Opportunity:
 - No picture uses all 16 million colors
 - Human eye does not see small differences
- Approach:
 - Select a palette of 256 colors
 - Indicate which palette entry to use for each pixel
 - Look up each color in the palette

"The rain in Spain falls mainly in the plain" \rightarrow [*=ain,^=in] "The r* ^ Sp* falls m*ly ^ the pl*"

Run-Length Encoding

• Opportunity:

- Large regions of a single color are common

- Approach:
 - Record # of consecutive pixels for each color

• An example of <u>lossless</u> encoding

GIF

- Palette selection, then lossless compression
- Opportunity:
 - Common colors are sent more often
- Approach:
 - Use fewer bits to represent common colors
 - 1 Blue 75% 75x1 = 75 75x2 = 150
 - 01 White 20% 20x2=40 20x2=40
 - 001 Red 5% $5x3=\underline{15}$ $5x2=\underline{10}$ 130 200

JPEG

• Opportunity:

- Eye sees sharp lines better than subtle shading

- Approach:
 - Retain detail only for the most important parts
 - Accomplished with Discrete Cosine Transform
 - Allows user-selectable fidelity
- Results:
 - Typical compression 20:1

Variable Compression in JPEG

37 kB (20%)

4 kB (95%)

Vector Graphics

Vector Graphics

- Raster images ("bitmap graphics")
 - Actually describe the contents of the image
 - Good for natural scenes

- Vector images
 - Mathematically describe how to draw the image
 - Rescalable without loss of resolution

Discussion Point: Selecting an Image Format

- Should I use GIF, JPEG, or vector graphics for ...
 - Color photos?
 - Scanned black & white text?
 - Line drawings?

Basic Video Coding

- Display a sequence of images
 Fast enough for smooth motion and no flicker
- NTSC Video

- 60 "interlaced" half-frames/sec, 512x486

• HDTV

- 30 "progressive" full-frames/sec, 1280x720

Video Data Rates

- "NTSC" Quality Computer Display
 - 640 X 480 pixel image
 - 3 bytes per pixel (red, green, blue)
 - 30 Frames per Second
- Bandwidth
 - 26.4 MB/second
 - Exceeds bandwidth of most disk drives
- Storage
 - CD-ROM would hold 25 seconds worth
 - 30 minutes would require 46.3 GB

Video Compression

- Opportunity:
 - One frame looks very much like the next
- Approach:
 - Record only the pixels that change
- Standards:
 - MPEG-1: Web video (file download)
 - MPEG-2: HDTV and DVD
 - MPEG-4: Web video (streaming)

I IntraP Forward PredictedB Backward Predicted

Encode complete image, similar to JPEG Motion relative to previous I and P's Motion relative to previous & future I's & P's

Frame Reconstruction

Basic Audio Coding

Sample at twice the highest frequency
 8 bits or 16 bits per sample

- Speech (0-4 kHz) requires 8 kB/s
 Standard telephone channel (1-byte samples)
- Music (0-22 kHz) requires 172 kB/s
 Standard for CD-quality audio (2-byte samples)

Music Compression

• Opportunity:

– The human ear cannot hear all frequencies at once

• Approach:

- Don't represent "masked" frequencies

• Standard: MPEG-1 Layer 3 (.mp3)

Temporal Masking

If we hear a loud sound, then it stops, it takes a while until we can hear a soft tone at about the same frequency.

"Psychoacoustic compression"

- Eliminate sounds below threshold of hearing
- Eliminate sounds that are frequency masked
- Eliminate sounds that are temporally masked
- Eliminate stereo information for low frequencies

Speech Compression

• Opportunity:

– Human voices vary in predictable ways

- Approach:
 - Predict what's next, then send only any corrections
- Standards:
 - Rule of thumb: 1 kB/sec for (highly compressed) speech
- Demo at <u>http://www.data-compression.com/speech.html</u>
 Scroll down to near the bottom

Narrated PowerPoint

- Create your slides
- Slide Show -> Record Slide Show
 Set microphone level
- Record the narration
 - Slide transitions are automatically captured
- Narration plays automatically when displayed

The "Last Mile"

• Traditional modems

- "56" kb/sec modems really move ~3 kB/sec

- Digital Subscriber Lines
 - 384 kb/sec downloads (~38 kB/sec)
 - 128 kb/sec uploads (~12 kB/sec)
- Cable modems
 - 10 Mb/sec downloads (~1 MB/sec)
 - 256 kb/sec uploads (~25kB/sec)

Multimedia on a Web Server

- Object stored in a file
- File transferred as an HTTP object:
 - Received entirely at the client
 - Passed to media player

Streaming

- Browser gets metafile over HTTP
 Launches media player to interpret the metafile
- Media player contacts streaming server

Streaming Audio and Video

- Begin replay after only a portion received
- Buffer provides time to recover lost packets
- Interrupts replay when "rebuffering"

Client Buffering

• Client-side buffering:

- Playout delay compensates for network delay

Playout Delay

- Receiver attempts to playout each chunk exactly *q* ms after chunk was generated
 - Chunk has time stamp *t*: play out chunk at t+q
 - Arrives after t+q: too late for playout, data "lost"
- Tradeoff for *q*:
 - Large q: less packet loss
 - Small q: better interactive experience
- Easy to increase q by inserting a pause
 Decreasing q requires skipping or accelerating

Lost Packets

- Network loss
 - Packets completely lost (e.g., due to collisions)
- Delay loss
 - Packets arrives too late for playout
 - Queueing; sender and receiver processing delays
- Loss tolerance
 - -1% to 10% packet loss may be tolerable
 - Some encoding schemes are more tolerant than others

Multiple Client Rates

Q: how to handle different client receive rate capabilities?

- -28.8 Kbps dialup
- 100Mbps Ethernet

<u>A:</u> server stores, transmits multiple copies of video, encoded at different rates

Internet Telephony

- - "Live" (<400 ms delay)
 - Alternating talk spurts

Before You Go!

• On a sheet of paper (no names), answer the following question:

What was the muddlest point in today's class?