Practicum: Networks, Basic HTML

Week 2
LBSC 690
Information Technology

Muddiest Points

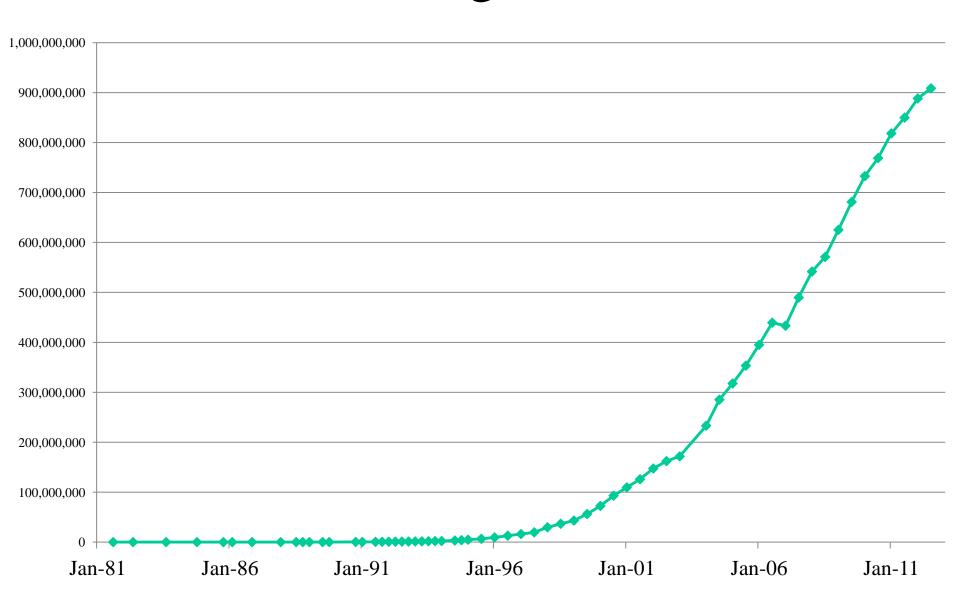
- Bytes, nanos, gigas, Hz, ...
- The memory hierarchy
- Why disks scatter things around
- RAID arrays
- The term project

Goals for Today

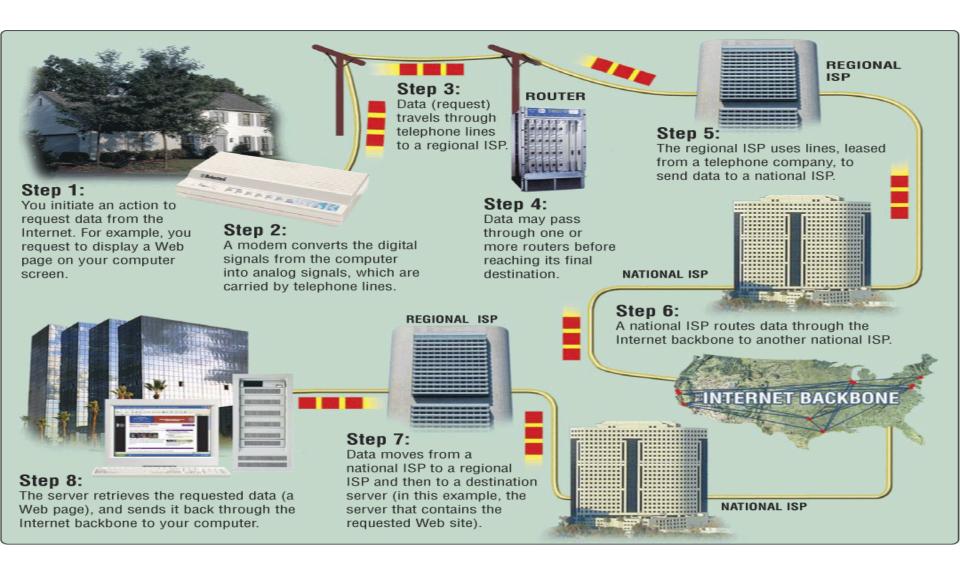
Understand how bits get from here to there

• Learn to move files to a "Web server"

Use those skills to make a Web page


The Internet

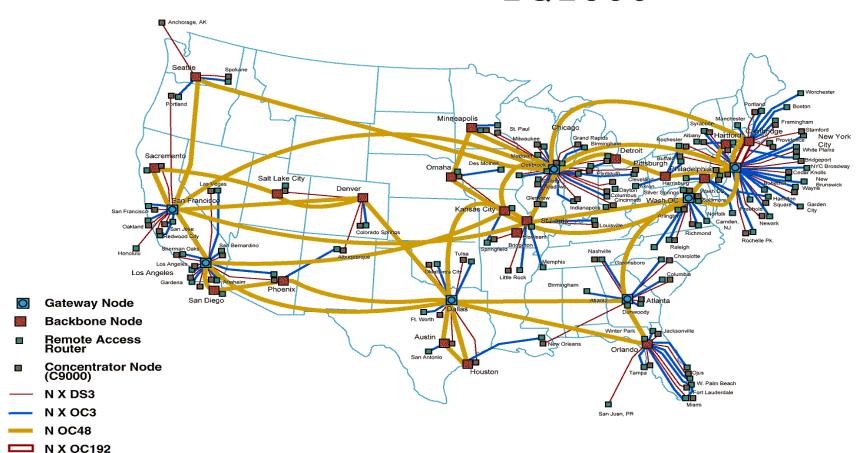
- Global collection of <u>public</u> "IP" networks
 - Private networks are often called "intranets"
- Independent
 - Each organization maintains its own network
- Cooperating
 - Internet Protocol (IP) address blocks
 - Domain names
 - World-Wide Web Consortium (W3C)
 - Computer Emergency Response Team (CERT)


A Short History of the Internet

- 1969: Origins in government research
 - Advanced Research Projects Agency (ARPAnet)
 - Key standards: UDP, TCP, DNS
- 1983: Design adopted by other agencies
 - Created a need for inter-network connections
 - Key standards: IP
- 1991: World-Wide Web added point-and-click
 - Now 908 million Internet "hosts" (July 2012)
 - Key standards: HTTP, URL, HTML, XML

What Changed in 1994?

Overview


Types of Digital Channels

- "Backbone"
 - Microwave
 - Satellite
 - Fiber

- "Last mile" wired
 - Telephone modem
 - ADSL
 - Cable modem
 - Fiber
- "Last mile" wireless
 - Wi-Fi (IEEE 802.11)
 - GSM

AT&T IP BACKBONE NETWORK 2Q2000

Note: map is not to scale.

Thinking About Speed

- Two parts of moving data from here to there:
 - Getting the first bit there
 - Getting everything there
- Fundamentally, there's no difference:
 - Moving data from the processor to RAM
 - Saving a file to disk
 - Downloading music from a server in China

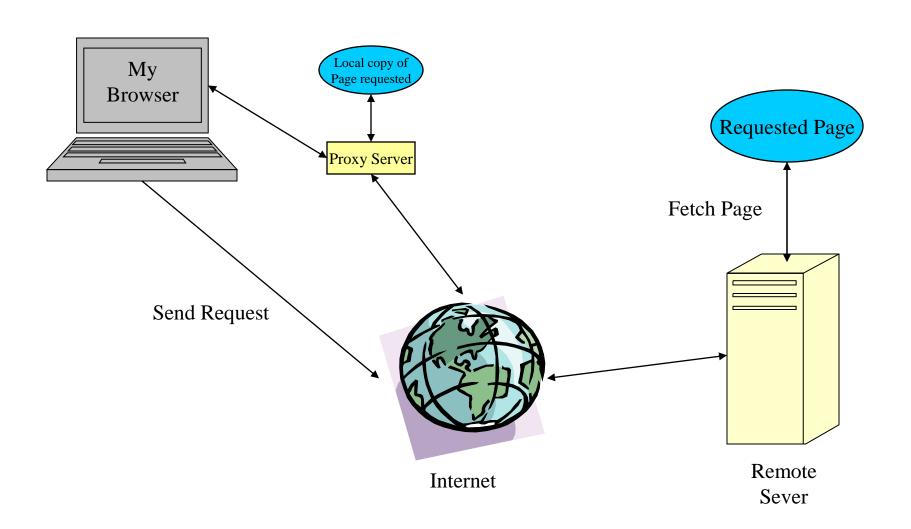
Some Definitions

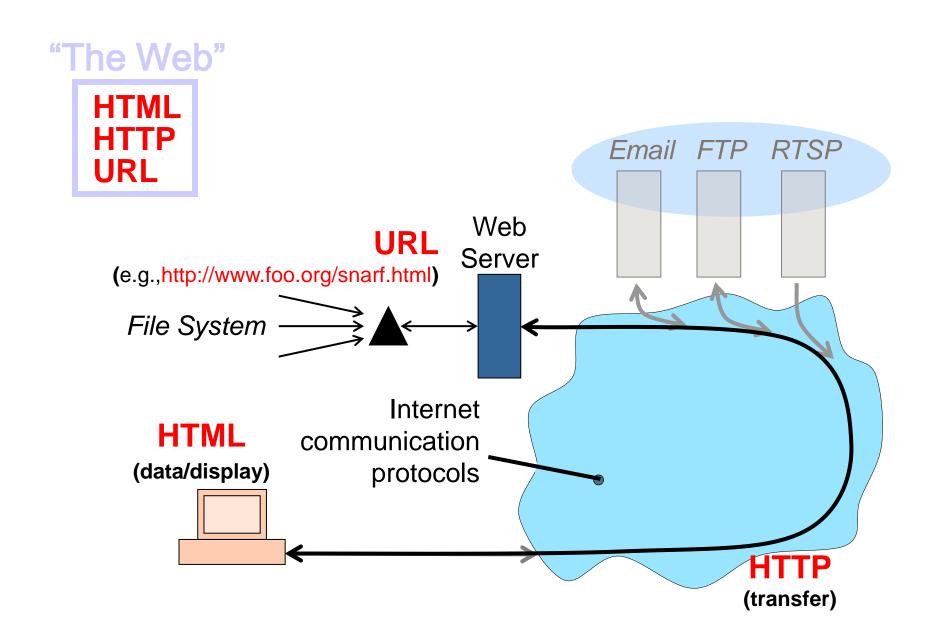
Latency

The amount of **time** it takes data to travel from source to destination

Bandwidth

The amount of data that can be transmitted in a fixed amount of **time**


Internet ≠ Web


• Internet: collection of global networks

• Web: way of managing information exchange

- There are many other uses for the Internet
 - File transfer (FTP)
 - Email (SMTP, POP, IMAP)

The World-Wide Web

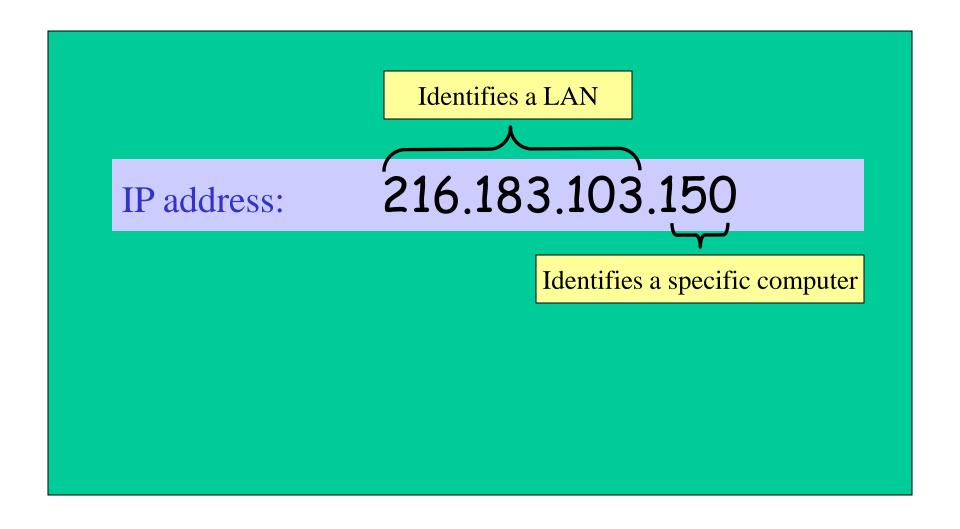
Web Standards

- HTML
 - How to write and interpret the information
- URL
 - Where to find it
- HTTP
 - How to get it

Types of Internet "Nodes"

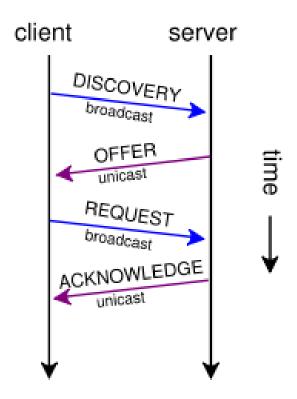
- Hosts
 - Computers that use the network to do something
- Routers
 - Specialized computers that route packets
- Gateway
 - Routers that connect two networks
- Firewall
 - Gateways that pass packets selectively

IP Address


• Every host (and every router) is identified by an "Internet Protocol" (IP) address

• 32 bit number, divided into four "octets"

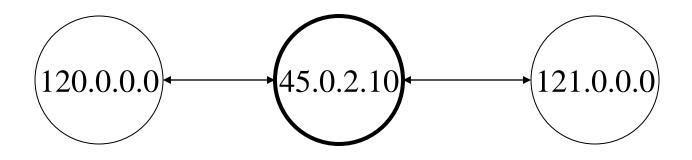
128.8.11.33 216.239.39.99 199.181.132.250


Example: point your browser at "http://66.249.93.99/"

An Internet Protocol (IP) Address

Dynamic IP Addresses

• Dynamic Host Configuration Protocol (DHCP)



Hands-on: Learn About Your IP Address

- Find your IP address
 - Bring up a command window
 - In Windows, type "cmd" in the search box!
 - Type "ipconfig /all" (and press enter)
- See who "owns" that address
 - Use http://remote.12dt.com/
- See where in the world it (probably) is
 - http://www.geobytes.com/ipLocator.htm

Routing Tables

IP Prefix	Next Router	Estimated Delay
216.141.xxx.xxx	120.0.0.0	18 ms
216.xxx.xxx	121.0.0.0	34 ms
101.42.224.xxx	120.0.0.0	21 ms
XXX.XXX.XXX	121.0.0.0	250 ms

TraceRoute

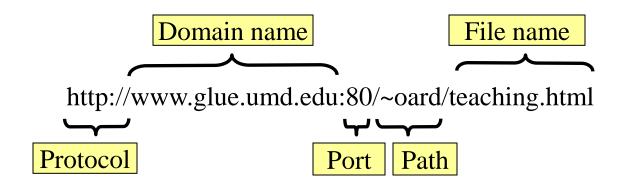
- See how packets get from South Africa to you
 - http://services.truteq.com/

- Look at the same data visually
 - http://visualroute.visualware.com/

Domain Name Service (DNS)

- "Domain names" improve usability
 - Easier to remember than IP addresses
 - Written like a postal address: specific-to-general

- Each "name server" knows one level of names
 - "Top level" name servers know .edu, .com, .mil, ...
 - .edu name server knows umd, umbc, stanford, ...
 - .umd.edu name server knows wam, ischool, ttclass, ...
 - .wam.umd.edu name server knows rac1, rac2, ...


IP Addresses and Domain Names

IP address: 128.8.10.142

Domain Name: wam.umd.edu

Uniform Resource Locator (URL)

Uniquely identify Web pages

Ports

- Well-known ports
 - 22 Secure Shell (for SSH and SFTP)
 - 25 Simple Mail Transfer Protocol (SMTP)
 - 53 Domain Name System (DNS)
 - 68 Dynamic Host Configuration Protocol (DHCP)
 - 80 Hypertext Transfer Protocol (HTTP)
 - 143 Internet Message Access Protocol (IMAP)
 - 554 Real-Time Streaming Protolol (RTSP)
- Registered Ports
 - 8080 HTTP server run by ordinary users
- Ephemeral Ports

Port Mapping

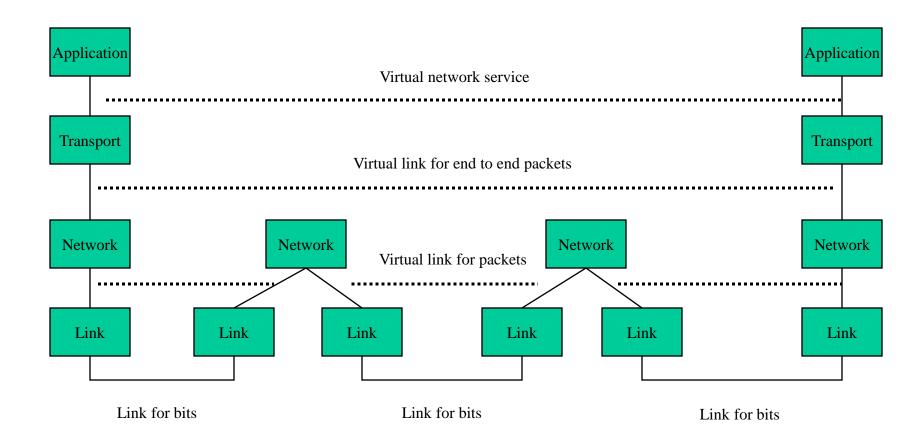
- Internet Service providers lease one IP address
 - But home networks may contain many machines
- Network Address Translation (NAT)
 - Each internal machine gets a private IP address
 - Ports on internal machines are mapped both ways
- Port forwarding
 - Permits public server to run in the local network

Paths

- Specify location of files on a hard drive
- Folder metaphor
 - Hierarchically nested directories
 /afs/wam.umd.edu/home/wam/j/i/jimmylin/home
 C:\Documents and Settings\Jimmy Lin\My Documents
 - Absolute vs. relative paths

```
../pub
..\Desktop
~/oard
```

Hands On: The Directory Tree

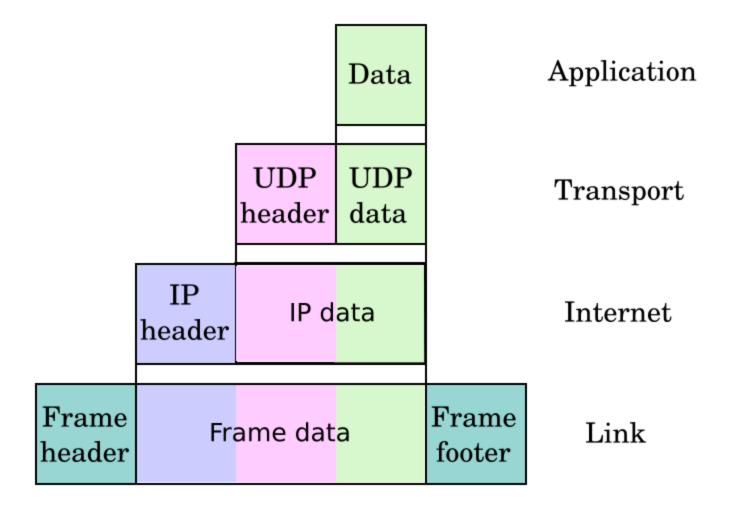

• First, use Windows Explorer to visually explore the directory tree

- Now launch a "shell" (type cmd in search box)
 - "c:" takes you to Drive C
 - "dir" lists the present "directory"
 - "cd WINDOWS" takes you "down" to the WINDOWS directory
 - cd .. takes you "up" in the tree

The TCP/IP "Protocol Stack"

- Link layer moves bits
 - Ethernet, cable modem, DSL
- Network layer moves packets
 - <u>IP</u>
- Transport layer provides services to applications
 - UDP, <u>TCP</u>
- Application layer uses those services
 - DNS, SFTP, SSH, ...

TCP/IP layer architecture


Transmission Control Protocol (TCP)

- Built on the network-layer version of UDP
- Guarantees delivery all data
 - Retransmits missing data
- Guarantees data will be delivered in order
 - "Buffers" subsequent packets if necessary
- No guarantee of delivery time
 - Long delays may occur without warning

User Datagram Protocol (UDP)

- The Internet's basic transport service
 - Sends every packet immediately
 - Passes received packets to the application
- No delivery guarantee
 - Collisions can result in packet loss
- Example: sending clicks on web browser

UDP/IP Protocol Stack

HyperText Transfer Protocol (HTTP)

Send request

GET /path/file.html HTTP/1.0

From: someuser@jmarshall.com

User-Agent: HTTPTool/1.0

• Server response

HTTP/1.0 200 OK

Date: Fri, 31 Dec 1999 23:59:59 GMT

Content-Type: text/html

Content-Length: 1354

<a href="https://www.nilennium!</h1>... <a href="https://www.nilennium!</h1>... <a href="https://www.nilennium!</h1>... <a href="https://www.nilennium!</h1>... <a href="https://www.nilennium! https://www.nilennium! h

File Transfer Program (FTP)

- Used to move files between machines
 - Upload (put) moves from client to server
 - Download (get) moves files from server to client
- Both visual and command line interfaces available
- Normally requires an account on the server
 - Userid "anonymous" provides public access

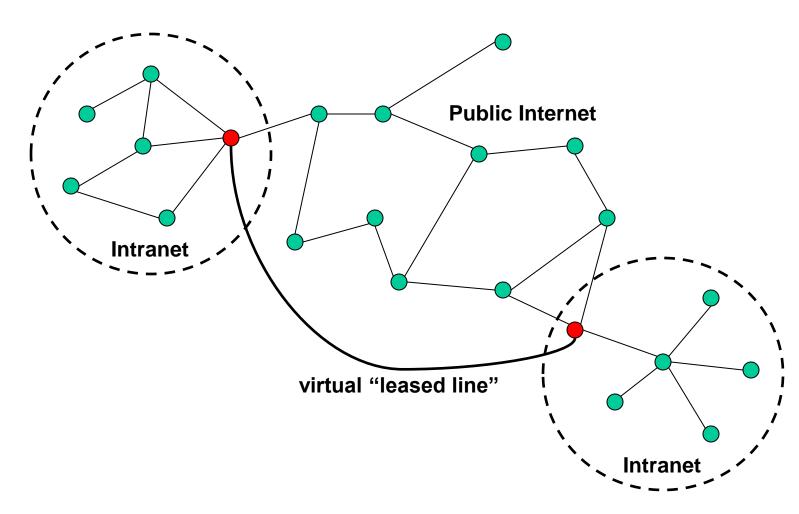
Hands On: Graphical Secure FTP

- SFTP to "terpconnect.umd.edu"
- Change directory to "/pub/USERID"
- Upload or download files
- You can see these files at: http://terpconnect.umd.edu/~USERID/

Network Abuse

- Flooding
 - Excessive activity, intended to prevent valid activity
- Worms
 - Like a virus, but self-propagating
- Sniffing
 - Monitoring network traffic (e.g., for passwords)

Encryption


- Secret-key systems (e.g., DES)
 - Use the same key to encrypt and decrypt
- Public-key systems (e.g., PGP)
 - Public key: open, for encryption
 - Private key: secret, for decryption
- Digital signatures
 - Encrypt with private key, decrypt with public key

Encrypted Standards

- Secure Shell (SSH)
 - Replaces Telnet
- Secure FTP (SFTP)/Secure Copy (SCP)
 - Replaces FTP
- Secure HTTP (HTTPS)
 - Used for financial and other private data
- Wired Equivalent Protocol (WEP)
 - Used on wireless networks
- Virtual Private Network (VPN)
 - Not really a "standard"

Virtual Private Networks

a secure private network over the public Internet

HyperText Markup Language (HTML)

• Simple document structure language for Web

- Advantages
 - Adapts easily to different display capabilities
 - Widely available display software (browsers)
- Disadvantages
 - Does not directly control layout

"Hello World" HTML, This is the header

```
<html>
<head>
<title>Hello World!</title>
'</head>
<body>
Hello world! This is my first webpage!
</body>
</html>
```

This is the actual content of the HTML document

Hands On: Learning HTML From Examples

- Use Internet Explorer to find a page you like
 - http://www.glue.umd.edu/~oard
- On the "Page" menu select "View Source" (in IE7)
 - Opens a notepad window with the source
- Compare HTML source with the Web page
 - Observe how each effect is achieved

Hands On: "Adopt" a Web Page

- Modify the HTML source using notepad
 - For example, change the page to yours
- Save the HTML source somewhere
 - In the "File" menu, select "Save As"
 - Put the name in quotes (e.g., "test.html")
- FTP it to your ../pub directory on terpconnect
- View it
 - http://www.wam.umd.edu/~(yourlogin)/test.html

Tips

- Edit files on your own machine
 - Upload when you're happy
- Save early, save often, just save!
- Reload browser to see changes
- File naming
 - Don't use spaces
 - Punctuation matters

HTML Document Structure

- "Tags" mark structure
 - <html>a document</html>
 - an ordered list
 - <i>something in italics</i></i>
- Tag name in angle brackets <>
 - Not case sensitive
- Open/Close pairs
 - Close tag is sometimes optional (if unambiguous)

Logical Structure Tags

- Head
 - Title
- Body
 - Headers: <h1> <h2> <h3> <h4> <h5>
 - Lists: , (can be nested)
 - Paragraphs:
 - Definitions: <dt><dd>
 - Tables:
 - Role: <cite>, <address>, , …

Physical Structure Tags

- Font
 - Typeface:
 - Size:
 - Color:
 - http://webmonkey.wired.com/webmonkey/reference /color_codes/Emphasis
 - − Bold:
 - − Italics: <i></i></i>

(Hyper)Links

index.html

```
<html>
<head>
<title>Hello World!</title>
</head>
<body>
Hello world! This is my first webpage!
Click <a href="test.html">here</a> for another page.
</body>
</html>
```

test.html

```
<html>
<head>
<title>Another page</title>
</head>
<body>
This is another page.
</body>
</html>
```

Hypertext "Anchors"

- Internal anchors: somewhere on the same page
 - Students
 - Links to: Student Information
- External anchors: to another page
 - CLIS
 - CLIS students
- URL may be complete, or relative to current page
 - 2
- File name part of URL is case sensitive (on Unix servers)
 - Protocol and domain name are not case sensitive

Images

- or
 -
 - SRC: can be url or path/file
 - ALT: a text string
 - ALIGN: position of the image
 - WIDTH and HEIGHT: size of the image
- Can use as anchor:
 -
- Example:
 - http://www.umiacs.umd.edu/~daqingd/Image-Alignment.html

Tables

the <math> toe <math>

Table Example

```
<caption align="right">The caption</caption>
  Header1 
    Header2
 first row, first item 
    first row, second item
 second row, first item
    second row, second item
```

See also: http://www.umiacs.umd.edu/~daqingd/Simple-Table.html

Before You Go

On a sheet of paper, answer the following (ungraded) question (no names, please):

What was the muddiest point in today's class?