
“Systems” 

ILS, DAMS, and other Acronyms 

Week 12 

LBSC 690 

Information Technology 



The System Life Cycle 

• Systems analysis 

– How do we know what kind of system to build? 

• User-centered design 

– How do we discern and satisfy user needs? 

• Implementation 

– How do we build it? 

• Management 

– How do we use it? 



Systems Analysis 

• First steps: 

– Understand the task 

• Limitations of existing approaches 

– Understand the environment 

• Structure of the industry, feasibility study 

• Then identify the information flows 

– e.g., Serials use impacts cancellation policy 

• Then design a solution 

– And test it against the real need 



Types of Requirements 

• User-centered 

– Functionality 

• System-centered 

– Availability 

• Mean Time Between Failures (MTBF) 

• Mean Time To Repair (MTTR) 

– Capacity 

• Number of users for each application 

• Response time 

– Flexibility 

• Upgrade path 



Analyze the Information Flows 

• Where does information originate? 

– Might come from multiple sources 

– Feedback loops may have no identifiable source 

• Which parts should be automated? 

– Some things are easier to do without computers 

• Which automated parts should be integrated? 

• What existing systems are involved? 

– What information do they contain? 

– Which systems should be retained? 

–  What data will require “retrospective conversion”? 



Analyzing Information Flows 

• Process Modeling  

– Structured analysis and design 

– Entity-relationship diagrams 

– Data-flow diagrams 
 

• Object Modeling 

– Object-oriented analysis and design 

– Unified Modeling Language (UML) 



Some Library Activities 

• Acquisition 

• Cataloging 

• Reference 

– Online Public Access Catalog (OPAC) 

• Circulation 

• Weeding 

• Reserve, recall, fines, interlibrary loan, … 

• Budget, facilities schedules, payroll, ... 



Discussion Point: 

Integrated Library Systems 

Digital Asset Management Systems 

• What functions should be integrated? 

 

• What are the key data flows? 

 

• Which of those should be automated? 



Some Commercial  

Integrated Library Systems 

• (ExLibris) Aleph [academic] 

 

• (Follett) Destiny [schools] 

 

• (SirsiDynix) Symphony [public] 

 

• WorldCat Local 

 



Some Open Source 

Digital Asset Management Systems 

• Archivist’s Toolkit 

 

• Collective Access 

 

• Greenstone 

 

• Omeka 



The Waterfall Model 

Requirements 

Specification 

Implementation 

Verification 



The Waterfall Model 

• Requirements analysis 

– Specifies what the software is supposed to do 

• Specification 

– “Specification” defines the design of the software 

• Implementation 

• Verification 

– “Test Plan” defines how you will know that it did it 

• Maintenance 



The Spiral Model 

• Build what you think you need 

– Perhaps using the waterfall model 

• Get a few users to help you debug it 

– First an “alpha” release, then a “beta” release 

• Release it as a product (version 1.0) 

– Make small changes as needed (1.1, 1.2, ….) 

• Save big changes for a major new release 

– Often based on a total redesign (2.0, 3.0, …) 



The Spiral Model 

1.0 

0.5 

2.0 

3.0 

1.1 

1.2 

2.1 

2.2 

2.3 



Some Unpleasant Realities 

• The waterfall model doesn’t work well 

– Requirements usually incomplete or incorrect 

 

• The spiral model is expensive 

– Redesign leads to recoding and retesting 



“Rapid” Prototyping 

• Goal: explore requirements 

– Without building the complete product 

• Start with part of the functionality 

– That will (hopefully) yield significant insight 

• Build a prototype 

– Focus on core functionality, not in efficiency 

• Use the prototype to refine the requirements 

• Repeat the process, expanding functionality 



Rapid Prototyping + Waterfall 

Update 

Requirements 

Choose 

Functionality 

Build 

Prototype 

Initial 

Requirements 

Write 

Specification 

Create 

Software 

Write 

Test Plan 



Strategic Choices 

• Acquisition strategy 

– Off-the-shelf (“COTS”) 

– Custom-developed 

 

• Implementation strategy 

– “Best-of-breed” 

– Integrated system 



Architecture Choices 

• Self-contained (e.g., PDA) 

– Requires replication of software and data 

• Client-server (e.g., Web) 

– Some functions done centrally, others locally 

• Peer-to-peer (e.g., Skype) 

– All data and computation is distributed 

• “Cloud computing” 

– Centrally managed data and compute centers 



Source: Harper’s (Feb, 2002) 

What do Oregon, Iceland, abandoned mines have in common? 



Maximilien Brice, © CERN 



Cloud Computing: Rent vs. Buy 

• Centralization of computing resources 

– Space 

– Power 

– Cooling 

– Fiber 

• Issues: 

– Efficiency 

– Utilization 

– Redundancy 

– Management 



Management Issues 
• Policy 

– Privacy, access control, appropriate use, … 

• Training 

– System staff, organization staff, “end users” 

• Operations 

– Fault detection and response 

– Backup and disaster recovery 

– Audit 

– Cost control (system staff, periodic upgrades, …) 

• Planning 

– Capacity assessment, predictive reliability, … 



Total Cost of Ownership 

• Planning 

• Installation 

– Facilities, hardware, software, integration, migration, 

disruption 

• Training 

– System staff, operations staff, end users 

• Operations 

– System staff, support contracts, outages, recovery, … 



Total Cost of Ownership 



Some Examples 

Proprietary Open Source 

Operating system Windows Linux 

Office suite Microsoft Office OpenOffice 

Image editor Photoshop GIMP 

Web browser Internet Explorer Firefox 

Web server IIS Apache 

Database Oracle MySQL 



Open Source “Pros” 

• More eyes  fewer bugs 

• Iterative releases  rapid bug fixes  

• Rich community  more ideas 

– Coders, testers, debuggers, users 

• Distributed by developers  truth in advertising 

• Open data formats  Easier integration 

• Standardized licenses 



Open Source “Cons” 

• Communities require incentives 

– Much open source development is underwritten 

• Developers are calling the shots 

– Can result in feature explosion 

• Proliferation of “orphans” 

• Diffused accountability 

– Who would you sue? 

• Fragmentation 

– “Forking” may lead to competing versions 

• Little control over schedule 



Iron Rule of Project Management 

• You can control any two of: 

– Capability 

– Cost 

– Schedule 

 

• Open source software takes this to an extreme 



Open Source Business Models 

• Support Sellers 

 

• Loss Leader 

 

• Widget Frosting 

 

• Accessorizing  

Sell distribution, branding, and after-sale services.  

Give away the software to make a market for proprietary software. 

If you’re in the hardware business, giving away software doesn’t hurt. 

Sell accessories:  

books, compatible hardware, complete systems with pre-installed software 



Summary 

• Systems analysis 

– Required for complex multi-person tasks 

• User-centered design 

– Multiple stakeholders complicate the process 

• Implementation 

– Architecture, open standards, … 

• Management 

– Typically the biggest cost driver 



The Grand Plan 

Computers, Networks 

Web, XML, Social Software 

Multimedia Databases Programming Search 

Building and Deploying Systems 

Policy 


