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ABSTRACT

A significant challenge in electronic discoverytie ability to

retrieve relevant documents from a corpus of uctiired text
containing emails and other written forms of huniaiuman

communications. For such tasks, recall suffersthyresince it is

difficult to anticipate all variations of a traditial keyword search
that an individual may employ to describe an eventity or item

of interest. In these situations, being able t@matically identify

conceptually related terms, with the goal of augimgnan initial

search, has significant value. We describe a melbgg that

identifies related terms using a novel approacht thidizes

Reflective Random Indexing and present paramebesipact
its effectiveness in addressing information retrlaveeds for the
TREC 2010 Enron corpus.

1. Introduction

This paper examines reflective random indexing away to

automatically identify terms that co-occur in apas, with a view
to offering the co-occurring terms as potential didates for
query expansion. Expanding a user’'s query withtedlaerms
either by interactive query expansion [1, 5] ordsyomatic query
expansion [2] is an effective way to improve seaetall. While

several automatic query expansion techniques dkisy, rely on
usage of a linguistic aid such as thesaurus [3}omcept-based
interactive query expansion [4]. Also, methods sastad-hoc or
blind relevance feedback techniques rely on anainkeyword

search producing a top-n results which can theusied for query
expansion.

In contrast, we explored building a semantic spasing
Reflective Random Indexing [6, 7] and using the @efic space
as a way to identify related terms. This would tifi@m the basis
for either an interactive query expansion or aroiuatic query
expansion phase.

Semantic space model utilizing reflective randordeking has
several advantages compared to other models odlibgilsuch
spaces. In particular, for the specific workflowpitally seen in
electronic discovery context, this method offerseay practical
solution.

2. Problem Description

Electronic discovery almost always involves searghifor

relevant and/or responsive documents. Given theitapce of e-
discovery search, it is imperative that the beshrnelogies are
applied for the task. Keyword based search has theebread and
butter method of searching, but its limitations édween well
understood and documented in a seminal study by &lMoran

[8]. At its most basic level, concept search tedbgies are
designed to overcome some limitations of keywoatc®e

When applied to document discovery, traditional Ban
keyword search often results in sets of documems include
non-relevant items (false positives) or that exelvelevant terms
(false negatives). This is primarily due to thesef§ of synonymy
(different words with similar meanings) or polysefsame word
with  multiple meanings). For polysemes, an impdrtan
characteristic requirement is that they share #mesetymology
but their usage has evolved it into different magsi In addition,
there are also situations where words that do hatesthe same
etymology have different meanings (e.g., river baskfinancial
bank), in which case they are classified as homanym

In addition to the above word forms, unstructurext tcontent,
and especially written text in emails and instaesgsages contain
user-created code words, proper name equivaleatgextually
defined substitutes, and prepositional referentes #hat mask
the document from being indentified using Booleasywvkord
search. Even simple misspellings, typos and OCRnseg errors
can make it difficult to locate relevant documents.

Also common is an inherent desire of speakers ¢oausinguage
that is most suited from the perspective of theakpe The Blair
Moran study illustrates this using an event whioh ¥ictim’s side
called the event in question an *“accident” or &ddter” while
the plaintiff's side called it an “event”, “situati”, “incident”,
“problem”, “difficulty”, etc. The combination of hman emotion,
language variation, and assumed context makeshikenge of
retrieving these documents purely on the basis obl&n
keyword searches an inadequate approach.

Concept based searching is a very different typseafch when
compared to Boolean keyword search. The input tocept

searching is one or more words that allow the itigator or user
to express a concept. The search system is theonmsble for

identifying other documents that belong to the sammcept. All

concept searching technologies attempt to retrieeiments that
belong to a concept (reduce false negatives andoieprecall)

while at the same time not retrieve irrelevant doents (reduce
false positives and increase precision).

3. Concept Search approaches

Concept search, as applied to electronic discovierg search
using meaning or semantics. While it is very intaitin evoking a
human reaction, expressing meaning as input tostersy and
applying that as a search that retrieves relevacumients is
something that requires a formal model. Technobthat attempt
to do this formalize both the input request and mthedel of
storing and retrieving potentially relevant documserin a



mathematical form. There are several technologieslable for
such treatment, with two broad overall approachesupervised
learning and supervised learning. We examine theésdly in the
following sections.

3.1 Unsupervised learning

These systems convert input text into a semantidemaypically

by employing a mathematical analysis technique ower
representation called vector space model. This moagures a
statistical signature of a document through itsngerand their
occurrences. A matrix derived from the corpus entlanalyzed
using a Matrix decomposition technique.

The system is unsupervised in the sense that & doerequire a
training set where data is pre-classified into emts or topics.
Also, such systems do not use ontology or any ifieesson
hierarchy and rely purely on the statistical patteof terms in
documents.

These systems derive their semantics through @septation of
co-occurrence of terms. A primary consideratiorm@intaining
this co-occurrence in a form that reduces impacha$e terms
while capturing the essential elements of a doctmé&ir
example, a document about an automobile launch coayain
terms about automobiles, their marketing activityblic relations
etc., but may have a few terms related to the mdatation and
attendees, along with frequently occurring ternthsas pronouns
and prepositions. Such terms do not define the apinc
automobile, so their impact in the definition mbstreduced. To
achieve such end result, unsupervised learningmsgstepresent
the matrix of document-terms and perform a mathigalat
transformation called dimensionality reduction. @@mine these
techniques in greater detail in subsequent sections

3.2 Supervised learning

In the supervised learning model, an entirely déffe approach is
taken. A main requirement in this model is supmyapreviously

established collection of documents that consstatéraining set.
The training set contains several examples of dectsn
belonging to specific concepts. The learning atbani analyzes
these documents and builds a model, which canlibaapplied to
other documents to see if they belong to one of gbeeral

concepts that is present in the original trainiag $hus, concept
searching task becomes a concept learning task.

It is a machine learning task with one of the fadlog techniques.

a) Decision Trees
b) Naive Bayesian Classifier
c) Support Vector Machines

While supervised learning is an effective approadlring

document review, its usage in the context of séagcthas
significant limitations. In many situations, a ti@g set that
covers all possible outcomes is unavailable arid difficult to

locate exemplar documents. Also, when the numbeutfomes
is very large and unknown, such methods are kn@mpréduce
inferior results.

For further discussion, we focus on the unsupedvisedels, as
they are more relevant for the particular use cafesoncept
search.

3.3 Unsupervised Classification Explored

As noted earlier, concept searching techniquesnast applicable
when they can reveal semantic meanings of a conpt®ut a
supervised learning phase. To further characténizgechnology,
we examine various mathematical methods that aiade.

3.4 Latent Semantic Indexing

Latent Semantic Indexing is one of the most welikn
approaches to semantic evaluation of documents Whs first
advanced in Bell Labs (1985), and later advancedShgan
Dumais and Landauer and further developed by mafioymation
retrieval researchers. The essence of the apprisath build a
complete term-document matrix, which captures dile t
documents and the words present in each documemical
representation is to build an N x M matrix where th rows are
the documents, and M columns are the terms in dingus. Each
cell in this matrix represents the frequency ofusoence of the
term at the “column” in the document “row”.

Such a matrix is often very large — document ctibbes in the

millions and terms reaching tens of millions aré nncommon.

Once such a matrix is built, mathematical technignewn as

Singular Value Decomposition (SVD) reduces the disienality

of the matrix into a smaller size. This procesauioes the size of
the matrix and captures the essence of each do¢lopeéhe most
important terms that co-occur in a document. Inghacess, the
dimensionally reduced space represents the “cosittyt reflect

the conceptual contexts in which the terms appear.

3.5 Principal Component Analysis

This method is very similar to latent semantic gsialin that a set
of highly correlated artifacts of words and docutseim which

they appear, is translated into a combination efdimallest set of
uncorrelated factors. These factors are the prahciems of

interest in defining the documents, and are detexthiusing a
singular value decomposition (SVD) technique. Tleheamatical
treatment, application and results are similar &beht Semantic
Indexing.

A variation on this, called independent componemlysis is a
technique that works well with data of limited \auility.
However, in the context of electronic discovery @oents where
data varies widely, this results in poor perforneanc

3.6 Non-negative matrix factorization
Non-negative matrix factorization (NMF) is anothechnique
most useful for classification and text clusteriwbere a large
collection of documents are forced into a small aetlusters.
NMF constructs a document-term matrix similar toAL&nd
includes the word frequency of each term. Thisaigdred into a
term-feature and feature-document matrix, with tleatures
automatically derived from the document collecti@he process
also constructs data clusters of related documestgart of the
mathematical reduction. An example of this resedscavailable
at [2] which takes the Enron email corpus and diassthe data
using NMF into 50 clusters.

3.7 Latent Dirichlet Allocation

Latent Dirichlet Allocation is a technique that domes elements
of Bayesian learning and probabilistic latent setivandexing. In

this sense, it relies on a subset of documentslpssified into a
training set, and unclassified documents are diadsiinto



concepts based on a combination of models fronirttiging set
[15].

3.8 Comparison of the above technologies
Although theoretically attractive and experimentaduccessful,
word space models are plagued with efficiency aralasbility
problems. This is especially true when the modedsfaced with
real-world applications and large scale data sBte source of
these problems is the high dimensionality of thetext vectors,
which is a direct function of the size of the dalawe use
document-based co-occurrences, the dimensionatjitiale the
number of documents in the collection, and if we werd-based
co-occurrences, the dimensionality equals the wdeay which
tends to be even bigger than the number of dociandritis
means that the co-occurrence matrix will
computationally intractable when the vocabulary atte
document collections grow.

Nearly all the technologies build a word space hyiding a
word-document matrix with each row representingoautnent
and column representing a word. Each cell in suchadrix
represents the frequency of occurrence of the wiardthat
document. All these technologies suffer from a mgnepace
challenge, as these matrices grow to very largessialthough
many cells are sparse, the initial matrix is s@dathat it is not
possible to accommodate the computational needdarmfe
electronic discovery collections. Any attempt tduee this size to
a manageable size is likely to inadvertently drameptially
responsive documents.

Another problem with all of these methods is tieytrequire the
entire semantic space to be constructed aheadmef tand are
unable to accommodate new data that would be btougfor
analysis. In most electronic discovery situatidh$s routine that
some part of the data is brought in as a firstilegdbatch, and
once review is started, additional batches arequsex.

4. Reflective Random Indexing

Reflective random indexing (RRI) [6, 7, 11] is awnbreed of
algorithms that has the potential to overcome taability and
workflow limitations of other methods. RRI builds semantic
space that incorporates a concise description rofi-t®cument
co-occurrences. The basic idea of the RRI andehmestic vector
space model is to achieve the same dimensionatitjation
espoused by latent semantic indexing, without maaithe
mathematically complex and intensive singular
decomposition and related matrix methods. RRI Isuddset of
semantic vectors, in one of several variationsrmt®rm, term-
document and term-locality. For this study, we tail RRI space
using term-document projections, with a set of tgattors and a
set of document vectors. These vectors are buiigus scan of
the document and term space with several data tiaatian

steps.

The algorithm offers many parameters for contrgllinthe
generation of semantic space to suit the needgetific accuracy
and performance targets. In the following sectioms, examine
the elements of this algorithm, its characteristicgl various
parameters that govern the outcome of the algorithm

4.1 Semantic Space Construction
As noted earlier, the core technology is the cawction of
semantic space. A primary characteristic of theaseim space is a

soon becom
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term-document matrix. Each row in this matrix reyergs all
documents a term appears in. Each column in thatixma
represents all terms a document contains. Suchrasentation is
an initial formulation of the problem for vectores models.
Semantic relatedness is expressed in the connesedif each
matrix cell. Two documents that share the samef&trms are
connected through a direct connection. It is alsssible for two
documents to be connected using an indirect referen

In most cases, term-document matrix is a very sparatrix and
can grow to very large sizes for most documentyaimlicases.
Dimensionality reduction reduces the sparse mainto a

manageable size. This achieves two purposes. Rirshables
large cases to be processed in currently availablaputing

platforms. Second, and more importantly, it cauhe semantic
relatedness through a mathematical model.

The RRI algorithm begins by assigning a vector ofeatain
dimension to each document in the corpus. Thesgrasents are
chosen essentially at random. For example, theatiagpelow has
assigned a five-dimensional vector to each documeurith

specific randomly chosen numbers at each positibhese
numbers are not important — just selecting a unigaigern for
each document is sufficient.
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Figure 1: Document Vectors

From document vectors, we construct term vectorstdnating

through all terms in the corpus, and for each tevenjdentify the
documents that term appears in. In cases whereetheappears
multiple times in the same document, that termiverga higher
weight by using its term frequency.

I._'J = 2 T’.‘,;l.l',f;‘:_i'

=D

Each term ks frequency in the documeptweighs in for each
document vector’'s position. Thus, this operatioojguts all the
documents that a term appears in, and condensidoitthe
dimensions allocated for that term. As is evidémt operation is
a fast scan of all terms and their document pastidUsing
Lucene API TermEnum and TermDocs, a collection of term
vectors can be derived very easily.

Once the term vectors are computed, these ternmorgectre
projected back on to document vectors. We staeshfwith a new
set of document vectors, where each vector is adfutine term
vectors for all the terms that appear in that doemumOnce again,
this operation is merely an addition of floatingmanumbers of
each term vector, adjusting for its term frequeriny that

document. A single sweep of document vectors tm teector

projection followed by term vectors to document teec
constitutes a training cycle. Depending on needacoliracy in
the construction of semantic vectors, one may ahdosun the



training cycle multiple times. Upon completion d&tconfigured
number of training cycles, document and term vespaces are
persisted in a form that enables fast searchingiaffuments
during early data exploration, search, and documeniéw.

It is evident that by constructing the semanticteespace, the
output space captures the essential co-occurreratterns

embodied in the corpus. Each term vector representsdensed
version all the documents the term appears ineacth document
vector captures a summary of the significant tepnesent in the
document. Together, the collection of vectors repnés the
semantic nature of related terms and documents.

Once a semantic space is constructed, a searchldted terms of
a given query term is merely a task of locating thearest
neighbors of the term. Identifying such terms imesl using the
query vector to retrieve other terms in the ternctee stores
which are closest to it by cosine measurement. ié¥atg
matching documents for a query term is by idemiyihe closest
documents to the query term’s vector in documemtorespace,
again by way of cosine similarity.

An important consideration for searching vectorcggais the
performance of locating documents that are cosiméas,

without requiring a complete scan of the vector cepaTo
facilitate this, the semantic vector space is omghin the form
of clusters, with sets of the closest vectors attar&zed by both
its centroid and the Euclidean distance of théné&st data point in
the cluster. These are then used to perform a tddesearch
eliminating the examination of a large number oftérs.

4.2 Benefits of Semantic Vector Space

From the study the semantic vector space algorithng can

immediately notice the simplicity in realizing teemantic space.
A linear scan of terms, followed by a scan of doenta is

sufficient to build a vector space. This simplicity construction

offers the following benefits.

a) In contrast to LSA and other dimensionality redoicti
techniques the semantic space construction requires
much less memory and CPU resources. This is pilynari
because matrix operations such as singular value
decomposition (SVD) are computationally intensive,
and requires both the initial term-document madrixl
intermediate matrices to be manipulated in memiory.
contrast, semantic vectors can be built for a portif
the term space, with a portion of the index. Hlso
possible to scale the solution simply by employing
persistence to disk at appropriate batching levels
scaling to unlimited term and document collections.

b) The semantic vector space building problem is more
easily parallelizable and distributable across iplat
systems. This allows parallel computation of thacep
allowing for a distributed algorithm to work on rtiple
term-document spaces simultaneously. This can
dramatically increase the availability of concegdreh
capabilities to very large matters, and within time
constraints that are typically associated withdarg
electronic discovery projects..

c) Semantic space can be built incrementally, as new
batches of data are received, without having ttdkhie
entire space from scratch. This is a very common
scenario in electronic discovery, as an initiachadf
document review needs to proceed before all batatees
collected. It is also fairly common for the scofe o
electronic discovery to increase after early case
assessment.

d) Semantic space can be tuned using parameter selecti
such as dimension selection, similarity function
selection and selection of term-term vs. term-daentm
projections. These capabilities allow electronic
discovery project teams to weigh the costs of
computational resources against the scope of datisme
to be retrieved by the search. If a matter requiresry
narrow interpretation of relevance, the concepiciea
algorithm can be tuned and iterated rapidly.

Like other statistical methods, semantic spacesmreheir ability
to work with a corpus containing documents from tipié
languages, multiple data types and encoding tyfeswehich is a
key requirement for e-discovery. This is becausesystem does
not rely on linguistic priming or linguistic ruldsr its operation.

5. Performance Analysis

Resource requirements for building a semantic vespace is an
important consideration. We evaluated the time amhce
complexity of semantic space algorithms as a fonctf corpus
size, both from the initial construction phase dou follow-on
search and retrievals.

Performance measurements for both aspects arectdrézad for
four different corpora, as indicated below.

TREC
Reuters |[EDRM [Tobacco
Corpus Collection|Enron |Corpus
PST Files - 171 -
No. of Emails - 428072 -

No. of Attachments 21578 305508 6,270,345
No. of Term Vectors (email) - 251110 -

No. of Document Vectors

(email) - 402607 | -

No. of Term Vectors

(attachments) 63210 18991[L 3,276,880
No. of Doc Vectors

(attachments) 21578 305508 6,134,210
No. of Clusters (email) - 3996 -

No. of Clusters (attachmen|134 2856 210,789

Table 1: Data Corpus and Semantic Vectors

As can be observed, term vectors and document reeotary
based on the characteristics of the data. While nilvber of



document vectors closely tracks the number of derus) the
number of term vectors grows more slowly. Thishis tase even
for OCR-error prone ESI collections, where the tevector

growth moderated as new documents were added totpes.

5.1 Performance of semantic space building

phase

Space complexity of the semantic space model isafinwith
respect to the input size. Also, our implementagantitions the
problem across certain term boundaries and petbisteerm and
document vectors for increased scalability. Themtlgm requires
memory space for tracking one million term and dpent
vectors, which is about 2GB, for a semantic vediarension of
200.

Time for semantic space construction is linear foe tumber of
terms and documents. For very large corpus,
construction requires periodic persistence of pliyticonstructed

term and document vectors and their clusters. Aic&p
configuration persist term vectors for each millierms, and

documents at each million documents. As an exantipleTREC

tobacco corpus would require 4 term sub-space riEins,

with six document partitions, yielding 24 data Eence

invocations. If we consider the number of trainieygles, each
training cycle repeats the same processes. As ammg, the

TREC tobacco corpus with two training cycles inwesv48

persistence invocations. For a corpus of this gieesistence adds
about 30 seconds for each invocation.

Performance Item Vector Cluster
Construction | Construction
(minutes) (minutes)
Reuters-21578 dataset 1 1
EDRM Enron dataset 40 15
TREC Tobacco Corpus| 490 380

Table 2: Time for space construction, two training cycles
(default)

These measurements were taken on commodity Delbfulge
R710 system, with two Quad Xeon 5500 processoid. JdEHz
CPU and 32GB amount of memory.

5.2 Performance of exploration and search
Retrieval time for a concept search and time falding semantic
space exploration are also characterized for varmrpus sizes
and complexity of queries. To facilitate a fastesscto term and
document vectors, our implementation has employg@dirpaose-
built object store. The object store offers théolwing.

a) Predictable and consistent access to a term omaaTiu
semantic vector. Given a term or document, theabbje
store provides random access and retrieval to its
semantic vector within 10 to 30 milliseconds.

b) Predictable and consistent access to all nearest
neighbors (using cosine similarity and Euclidean
distance measures) of a term and document vedter. T
object store has built-in hierarchical k-means tase
clustering. The search algorithm implements a elust

thecespa

exploration technique that algorithmically chootes
smallest number of clusters to examine for distance
comparisons. A cluster of 1000 entries is typically
examined in 100 milliseconds or less.

Given the above object store and retrieval patbisieval times
for searches range from 2 seconds to 10 secondsndimg on
large part, on the number of nearest neighbors téra, the
number of document vectors to retrieve and on the of the
corpus.

The following table illustrates observed perfornanior the
Enron corpus, using the cluster-directed searcbritbesi above.

Term vector search Average Stdev
Clusters Examined 417.84 274.72
Clusters Skipped 1001.25 478.98
Terms Compared 24830.38 1607972
Terms Matched 21510.29] 15930.2
Total Cluster Read Time (ms) 129.39 88.23
Total Cluster Read Count 417.84 274.72
Average Cluster Read Time (ms) 0.29 0.18
Total Search Time (ms) 274.56 187.27|

Table 3: Search Performance Measurements

As is apparent from the above time measurementwedls as
number of clusters examined and skipped, identifyielated
terms can be offered to users with predictabilitg @onsistency,
thereby making it possible for its usage as anracteve,
exploratory tool during early data analysis, cylimnalysis and
review phases of electronic discovery.

6. Search Effectiveness

An important analysis is to evaluate the effectaanof retrieval
of related terms from the perspective of the seaneleting the
information retrieval needs of the e-discovery stigator. We
begin by analyzing qualitative feel for search heshy examining
the related terms and by identifying the relevaotthese terms.
We then analyze search effectiveness using theatdmeasures,
Precision and Recall. We also examine search afé@ess using
Discounted Cumulative Gain (DCG).

6.1 Qualitative Assessment

To obtain a qualitative assessment, we considerelaged terms
retrieved and examine its nearness measurementadiddte the
closest top terms. The nearness measure we utedanalysis is
a cosine measure of the initial query vector whemmared with
the reported result. It is a well-understood measdijudgment of
quality in that a cosine measure reflects the atigmt of the two
vectors, and closeness to the highest value ofiepaihich is 1.0,
means perfect alignment.

Table 4 shows alignment measures for two conceptygterms
for the EDRM Enron Dataset [12].



It is quite clear that several of the related terams in fact
logically related. In cases where the relationghiguspect, it is
indeed the case that co-occurrence is properlyesepted. E.g.,
the term offshore and mainly appear in enough documents
together to make it to the top 20 related termsil8ily, we have
offshore andforeign co-occur to define the conceptaffshore on
the basis of the identified related terms.

Query: drilling Query: offshore

Related Similarity | Related Similarity
Term Term

refuge 0.15213 interests 0.13212
Arctic 0.12295 foreign 0.13207
wildlife 0.12229 securing 0.12597
exploration | 0.11902 viable 0.12422
Rigs 0.11172 involves 0.12345
Rig 0.11079 associated 0.12320
supplies 0.11032 mainly 0.12266
(o] 0.11017 principle 0.12248
refineries 0.10943 based 0.12241
Environmen| 0.10933 achieved 0.12220
talists

Table 4: Illustration of two query terms and their term neighbors

We can further establish the validity of our qualite assessment
using individual document pairs and their documesd-
occurrence patterns. As an example, Table 5 shovgne
similarity, the number of documents the two termppear in and
the common set of documents both terms appeagainan the
EDRM Enron Dataset.

Terml Term2 Cosine | Docsl | Docs2 | CDocs
offshore drilling 0.2825| 1685 1348 572
governor | Davis 0.3669| 2023 28717 943
brownout | power 0.0431| 13 30686 13
brownout | ziemianek| 0.5971 13 2 1

Table 5: Cosine similarity comparison for select terms from
EDRM Enron corpus

An observation from the above data is that whentie terms
compared appear in large number of documents watfigel
overlap, the similarity is greater. In contrast, dfie term is
dominant in its presence in a large number of d@nis) and the
other term is not, the presence of the two ternalithe common
documents rownout and power), the similarity is lower. Also
noteworthy is if two terms are common in every dueunt and the
documents each appears in are small numbeswfiout and

zZiemianek) the similarity measure is significantly higher.

6.2 Precision and Recall Measures

Precision and recall are two widely used metricef@luating the
correctness of a search algorithm [8]. Precisidarseto the ratio

of relevant results compared to the full retrievedt, and

represents the number of false positives in thaltteRecall on the
other hand, measures the ratio of relevant resoltigpared to the
number of relevant results actually present in dbkection, i.e.

the number of false negatives. Usually, recall laeder measure
to determine since it would require reviewing tinéire collection

for identifying all the relevant items, and sampbesed estimation
is a substitute.

For our purposes, two critical information retriemeeds should
be evaluated.

a) The ability of the system to satisfy informationtrieval
needs for the related concept terms.

b) The ability of the system to provide the same for
documents in a concept.

We evaluated both for several specific searchagyusie EDRM
Enron dataset, and we present our results below.

6.3 Precision and Recall for Related Concept

Terms

Note that Precision and Recall are defined forteelaconcept
terms using a combination of automated procedunésnaanual
assessment. As an example, we supplied a listeregiand their
related concept terms and asked human revieweratéoeach
related term result as either strongly correlatedetated to the
initial query, or if it is not related. This gives an indication of
precision for our results, for a given cutoff poiBitvaluating recall
is harder, but we utilized a combination of samplinethodology
and a deeper probe into related term result. Asxample of this,
we evaluated precision for a cutoff at 20 terms aechll by
examining 200 terms and constructing relevancehgrap

6.4 Impact of dimensions

Given that the semantic vector space performs ambionality
reduction, we were interested in understanding ithpact of
dimension choice for our semantic vectors. For thefault
implementation, we have a vector dimension of 2@tich means
that each term and document has a vector of 2GQirflp point
numbers.

To study this, we performed a study of precisiod eacall for the
EDRM Enron dataset and tracked the precision-regralph for
four choices of dimensions. The results are inditan Figure 2
below.

As can be observed, we did not gain significantrowpment on
precision and recall characteristics with a higloice of
dimension. However, for a large corpus, we expwat precision-
recall graph would indicate a significantly steefadiroff.

We also evaluated search performance relativen@msions. As
expected, there is a direct correlation betweertwioe which can
be explained by the additional disk seeks to retrieoth cluster
objects as well as semantic vectors for comparisothe query
vector. This is illustrated in Figure 3 below.
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Figure 2: Precision and Recall graphs for the EDRM Enron
Dataset
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Figure 3: Characterizing Search time and dimensions for 20
random searches

A significant observation is that overall resoucoasumption
increases substantially with increase in dimensiédslitionally,
vector-based retrieval also times increase signifly. We need
to consider these resource needs in the contéxtprbvements
in search recall and precision quality measures.

6.5 Discounted Cumulative Gain

In addition to Precision and Recall, we evaluatesl Discounted
Cumulative Gain (DCG), which is a measure of hofeaive the

concept search related terms are [14]. It meastimesrelative

usefulness of a concept search related term, baséid position

in the result list. Given that Concept Search quyepduces a set
of related terms and that a typical user would $omore on the
higher-ranked entries, the relative position ofted terms is a
very significant metric.

Figure 4 illustrates the DCG measured for the EDERfton
Dataset for a set of 20 representative searchefyudo dimension
choices indicated.

We evaluated the retrieval quality improvementshia context of
increases in resource needs and conclude thattabéepuality is
achievable even with a dimension of 200.

6.6 Impact of Training Cycles

We studied the impact of training cycles on ouultss A training
cycle captures the co-occurrence vectors computedé cycle to
feed into the next cycle as input vectors. As natedier, the
document vectors for each training cycle start wigmdomly
assigned signatures, and each successive trainiheg wilizes the
learned term semantic vectors and feeds it intditia document
vectors for that phase. This new set of documectove forms the
input (instead of the random signatures) for thet iiteration of
the training cycle.

Normalized DCG v. Dimensions
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Figure 4: Normalized DCG vs. dimensions of semantic vector
space

In our model, we note that term has a direct refegeo another
discovered term when they both appear in the sanandent. If
they do not appear in the same document but areected by
one or more other common terms between the twordents, we
categorize that as an indirect reference.

Adding training cycles has the effect of discovgritew indirect
references from one term to another term, while htsosting the
impact of common co-occurrence. As an example, erabl
illustrates training cycle 1 and training cycleesults for the term
drilling. Notice that new terms appear whose codo@nce is
reinforced by several indirect references.

Another view into the relative changes to term-tesimilarity
across training cycles is shown below. Table 7siliates the
progression of term similarity as we increase themiper of
training cycles. Based on our observations, them-term
similarity settles into a reasonable range in jusi cycles, and
additional cycles do not offer any significant bféne

Also noteworthy is that although the initial assigmts are
random, the discovered terms settle into a prdulietaollection
of co-occurrence relationship, reinforcing the aotithat initial
random assignment of document vectors get subsilpeckal
corpus-based co-occurrence effects.



Query: drilling

Training Cycle 1 Training Cycle 4

Rel at ed Simlarity | Rel ated Simlarity

Term Term

Wells 0.164588 rigs 0.25300

Rigs 0.151399 wells 0.23867

viking 0.133421 offshore 0.22940

Rig 0.130347 rig 0.21610

buckeye 0.128801 exploration  0.21397

Drill 0.124669 geo 0.20181

exploration | 0.123967 mcn 0.19312

richner 0.122284 producing 0.18966

producing 0.121846 ctg 0.18904

alpine 0.116825 gulf 0.17324
Table 6: Training Cycle Comparisons

Terml Term2 TC-1 | TC-2 TC-3 | TG4

offshore | drilling 0.2825 0.9453| 0.99310. 9981

governor | davis 0.3669 0.9393  0.975®. 9905

brownout | power 0.0431 0.7255 0.912%. 9648

brownout | ziemianek| 0.597(l 0.971%  0.9988. 9995

Table 7: Term Smilarity of training cycles (TC) for four cycles

7. CONCLUSIONS

Our empirical study of Reflective Random Indexingicates that
it is suitable for constructing a semantic spaceafaalyzing large
text corpora. Such a semantic space has the paltémtaugment
traditional keyword-based searching with relatathteas part of
query expansion. Co-occurrence patterns of termshimwi
documents are captured in a way that facilitatey easy query
construction and usage. We also observed the mpresdrseveral
direct and indirect co-occurrence associationschis useful in a
concept based retrieval of text documents in thateoa of
electronic discovery. We studied the impact of disiens and
training cycles, and our validations indicate thathoice of 200
dimensions and two training cycles produced actéptasults.

8. REFERENCES

[1] Donna Harman, Towards Interactive Query Expansion,
Lister Hill National Center for Biomedical Commuat®ns,
National Library of Medicine, Bethesda, Maryland

[2] Myaeng, S. H., & Li, M. (1992). Building Term Cless by
Acquiring Lexical Semantics from a Corpus. In Y.sfia
(Ed.), CIKM-92, (pp. 130-137). Baltimore, MD: ISMM.

[3] Susan Gauch and Meng Kam Chong, Automatic Word
Similarity Detection for TREC 4 Query Expansioneé&tical
Engineering and Computer Science, University ofd&an

[4] Yonggang Qiu, H.P.Frei, Concept-Based Query Exjpansi
Swiss Federal Institute of Technology, Zurich, Seitand

[5] lan Ruthven, Re-examining the Potential Effectissnef
Interactive Query Expansion, Department of Compatet
Information Sciences, University of Strathclydea&jow

[6] An Introduction to Random Indexing, Magnus Sahlgren
SICS, Swedish Institute of Computer Science.

[7] Trevor Cohen (Center for Cognitive Informatics and
Decision Making, School of Health Information Saes,
University of Texas), Roger Schvaneveldt (Applied
Psychology Unit, Arizona State University), Dominic
Widdows (Google Inc., USA)

[8] Blair, D.C. & Moran M.E. (1985). An evaluation adtrieval
effectiveness for a full-text document-retrievasteyn.
Communications of the ACM, 28, 298-299

[9] Berry, Michael W.; Browne (October 2005). "Email
Surveillance Using Non-negative Matrix Factorizatio
Computational & Mathematical Organization Theory(2}%
249-264. doi:10.1007/s10588-005-5380-5.

[10] Scott Deerwester, Susan T. Dumais, George W. Furnas
Thomas K. Landauer, Richard Harshman (1990). "limdex
by Latent Semantic Analysis" (PDF). Journal of the
American Society for Information Science 41 (6)13907.
doi:10.1002/(SICI1)1097-4571(199009)41:6<391::AlD-
ASI1>3.0.C0O;2-9.
http://Isi.research.telcordia.com/Isi/papers/JASI.HEF.
Original article where the model was first exposed.

[11] Widdows D, Ferraro K. Semantic vectors: a scalaplen
source package and online technology management
application. In: 6th International conference amglaage
resources and evaluation (LREC); 2008.

[12] EDRM Enron Dataset, http://edrm.net/resources/data-
sets/enron-data-set-files

[13] Precision and Recall explained,
http://en.wikipedia.org/wiki/Precision_and_recall

[14] Discounted Cumulative Gain,
http://en.wikipedia.org/wiki/Discounted_cumulativgain

[15] Latent Dirichlet Allocation,
http://en.wikipedia.org/wiki/Latent_Dirichlet_allaton



