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Abstract

In the first year of life, infants’ speech perception becomes attuned to the sounds of their native
language. This process of early phonetic learning has traditionally been framed as phonetic category
acquisition. However, recent studies have hypothesized that the attunement may instead reflect a
perceptual space learning process that does not involve categories. In this article, we explore the
idea of perceptual space learning by implementing five different perceptual space learning models
and testing them on three phonetic contrasts that have been tested in the infant speech perception
literature. We reproduce and extend previous results showing that a perceptual space learning model
that uses only distributional information about the acoustics of short time slices of speech can account
for at least some crosslinguistic differences in infant perception. Moreover, we find that a second
perceptual space learning model, which benefits from word-level guidance. performs equally well
in capturing crosslinguistic differences in infant speech perception. These results provide support
for the general idea of perceptual space learning as a theory of early phonetic learning but suggest
that more fine-grained data are needed to distinguish between different formal accounts. Finally, we
provide testable empirical predictions of the two most promising models and show that these are not
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identical, making it possible to independently evaluate each model in experiments with infants in future
research.

Keywords: Phonetic learning; Computational modeling; Perceptual space; Language acquisition;
Phone discrimination; Speech perception

1. Introduction

Infants’ speech perception changes in the first year of their life. For example, at the age
of 6–8 months, English-learning and Japanese-learning infants are equally able to detect the
difference between sounds [ɹ] (as in rock) and [l] (as in lock), whereas by the age of 10–
12 months the two groups diverge, showing attunement to the phonetic contrasts present in
their input language (Kuhl et al., 2006). Similar results have been reported for many other lan-
guages, such as Catalan (Bosch & Sebastián-Gallés, 2003), Zulu (Best & McRoberts, 2003),
Mandarin Chinese (Tsao, Liu, & Kuhl, 2006), French (Burns, Yoshida, Hill, & Werker, 2007),
Hebrew (Segal, Hejli-Assi, & Kishon-Rabin, 2016), etc. This process of attunement is known
as early phonetic learning, and a number of theoretical accounts have been proposed to explain
such learning (e.g., Best, 1994; Feldman, Goldwater, Dupoux, & Schatz, 2021; Kuhl & Iver-
son, 1995; Werker & Curtin, 2005). At the same time, the exact mechanisms underlying early
phonetic learning are not fully understood. One way to study such mechanisms is to imple-
ment them as computational models and then evaluate on data from experiments with infants.
A computational implementation requires that each mechanism is specified in sufficient detail
and guarantees that it can be easily tested on new datasets as they become available, ensuring
the method’s scalability (Cruz Blandón, Cristia, & Räsänen, 2021). Here, we adopt compu-
tational modeling to answer the question: Which computationally implemented mechanisms
of early phonetic learning, if any, can correctly predict the existing crosslinguistic data on
infants’ phone discrimination?

Until recently, no computational models could explain how the specific speech input to
which infants are exposed leads to the observed changes in those infants’ discrimination of
phonetic contrasts. In a recent study, Schatz, Feldman, Goldwater, Cao, and Dupoux (2021)
presented such a computational model, which correctly predicted the documented crosslin-
guistic difference in infants’ discrimination of [ɹ] and [l] after learning from unsegmented
speech. They explicitly simulated the learning process for Japanese and American English
infants by (separately) training their model on unsegmented multispeaker speech recordings
either in Japanese or in American English. They then measured the trained models’ ability to
discriminate [ɹ] and [l] with the machine ABX task, a flexible measure of discrimination that
can be applied to model representations in essentially any format. In this task, the Japanese
model showed a significantly higher discrimination error than the American English model,
a crosslinguistic pattern observed in 10–12-month-old infants (Kuhl et al., 2006). By testing
the model on one phonetic contrast, Schatz et al. (2021) showed the feasibility of predict-
ing crosslinguistic differences in phone discrimination by a model that applies distributional
learning mechanisms to unsegmented speech data. For this purpose, a single phonetic contrast
provides sufficient evidence. At the same time, the success of Schatz et al.’s approach calls
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for a more rigorous testing of their model, to determine whether this is a plausible model of
early phonetic learning. Our first goal is to test whether Schatz et al.’s model can correctly
predict crosslinguistic differences in infants’ discrimination of other phonetic contrasts in
other languages.

Our second goal relates to the particular model choice in Schatz et al. (2021). To our knowl-
edge, this is the only model proposed in the literature that learns from unsegmented speech
and has been shown to correctly predict crosslinguistic discrimination patterns. To simulate
a learner capable of handling realistic input, they selected a cognitively plausible model for
unsupervised learning from speech, proposed in the context of engineering applications. At
the same time, the model implements a relatively simple unsupervised clustering algorithm.
Many other cognitively plausible models have been recently proposed in the context of engi-
neering applications (e.g., Chung, Hsu, Tang, & Glass, 2019; Kamper et al., 2015; Kamper,
2019). These models implement various versions of perceptual space learning from the speech
signal, that is, a process of transforming the acoustic similarity space, leading to changes of
the distances between speech sounds (Feldman et al., 2021). Although Schatz et al. (2021)
showed that early phonetic learning can be modeled in terms of such perceptual space trans-
formations, perceptual space learning is not a single unified theory, and we need to under-
stand which mechanisms better explain the existing data. Therefore, we test which learning
mechanisms, as implemented in specific computational models, lead to results qualitatively
matching infants’ behavioral data.

To address these two issues, in Study 1 we apply the model of Schatz et al. (2021) to
three crosslinguistic phone discrimination tasks grounded in infant studies from different lan-
guages. We consider Schatz et al.’s (2021) original American English data in order to repro-
duce the reported findings and two other datasets (Mandarin Chinese and Catalan) in order
to determine whether the findings generalize to other contrasts and languages. We find that
the model can correctly predict the crosslinguistic pattern for the Mandarin Chinese con-
trast but not for the Catalan contrast. In Study 2, we consider four other models developed
in the speech technology community; these models are all state-of-the-art extensions of the
well-known autoencoder neural network (Kramer, 1991) commonly used in modeling sta-
tistical language learning (e.g., Jones & Brandt, 2020; Mareschal & French, 2017; Plaut &
Vande Velde, 2017). We evaluate these four algorithms on the same three datasets, to study
whether any of the algorithms can correctly predict the discrimination patterns for all the
three contrasts, potentially providing a better model of infant phonetic learning than the one
proposed in Schatz et al. (2021). Doing so allows us to gain insight into the kinds of repre-
sentations and learning mechanisms that infants are likely to employ.

We find that one model (Kamper, 2019) shows infant-like crosslinguistic discrimination
patterns for the same two contrasts as Schatz et al.’s model—the American English [ɹ]–[l]
and the Mandarin Chinese contrast—while three other models appear less successful as mod-
els of early phonetic learning. As a result, we have two models—Schatz et al. (2021) and
Kamper (2019)—that substantially differ in their learning mechanisms but make qualitatively
identical predictions on the three target contrasts. An important implication of this result is
that the existing discrimination datasets allow us to rule out some of the models but are equally
compatible with more than one model of early phonetic learning. Ideally, we would like to
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have a large collection of infants’ phone discrimination data that would include a wide vari-
ety of phonetic contrasts across languages from multiple experiments. However, such exper-
iments can be costly to run, and, therefore, it is important to carefully select phone contrasts
that are likely to yield crosslinguistic differences in discrimination. To help identify such con-
trasts, we further use our two “best” computational models to make predictions about discrim-
ination difficulty of various contrasts. These predictions can further guide experiments with
infants.

The models that we use learn from unsegmented speech data and do not rely on symbolic
representations of phones (see the next section for a relevant discussion). To better under-
stand the representations that emerge in our models, we provide additional analyses of these
representations, focusing on how well they match known phonetic categories. The results
suggest that the phonetic representation space of either model cannot be easily separated into
areas that would correspond to meaningful adult-like phonetic categories in a given language,
although the information about such categories may be easier to access in the representation
space of Schatz et al.’s (2021) model than in the space of Kamper’s (2019) model.

Our study contributes to understanding the mechanisms of early phonetic learning, and
perceptual space learning in particular, by providing a systematic crosslinguistic evaluation of
five relevant computational models implementing such mechanisms, by generating concrete
predictions using two of these models and by analyzing these models’ representations. In the
following section, we briefly introduce various accounts on early phonetic learning, describe
phone discrimination tasks that these accounts build on, and provide an overview of relevant
computational work.

2. Background

2.1. Accounts of early phonetic learning

Theoretical accounts of infant phonetic learning (e.g., Best, 1994; Feldman et al.,
2021; Kuhl & Iverson, 1995; Werker & Curtin, 2005) explain how infants move from
language-universal to language-specific phonetic perception. Traditionally, these accounts
have assumed that infants learn phonetic categories, and the emergence of such language-
specific categories affects infants’ ability to perceive differences between some phones
in other languages. Recently, such accounts have been challenged (Feldman et al., 2021;
McMurray, 2023), and an alternative view was proposed (Feldman et al., 2021): infants start
by learning perceptual spaces, while category learning comes later in life. Under this view,
infants’ discrimination ability changes due to the transformation of the acoustic similarity
space. While this account may contradict some commonly made assumptions in the existing
literature, Feldman et al. (2021) explain that the discrimination data alone cannot provide
sufficient evidence in favor of category learning, making both accounts equally viable. As a
result, it is unclear whether infants have acquired phonetic categories before they start learn-
ing words, an important question in language acquisition literature.

Formal computationally implemented models can help us evaluate the existing explana-
tory theories (Robinaugh, Haslbeck, Ryan, Fried, & Waldorp, 2021) and better understand
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which account of phonetic learning is more viable (Cruz Blandón et al., 2021). With regard
to the category learning account, there are no models that show how phonetic categories are
acquired from naturalistic input to infants. Instead, most existing modeling work has focused
on learning phonetic categories from highly idealized stimuli. To give a few examples, Val-
labha, McClelland, Pons, Werker, and Amano (2007) and Feldman, Griffiths, Goldwater, and
Morgan (2013) trained their models on the pre-computed values of simple features of vowel
tokens (first two formants and duration), while McMurray, Aslin, and Toscano (2009) only
used voice onset time of stop consonants. Such manual selection of phones and features makes
the models’ learning task much easier than the one infants face. Natural speech that infants
are exposed to is very noisy and is not aligned along the acoustic dimensions relevant to a
given language (see Feldman et al., 2021, for a relevant discussion). For example, statistical
learning of the vowel length contrast in Japanese from individual phone duration values is not
a trivial task due to overlapping distributions (Bion, Miyazawa, Kikuchi, & Mazuka, 2013).
As a result, when the above-mentioned models are evaluated on the kinds of data that better
resemble naturalistic speech data, their ability to learn is drastically reduced (Antetomaso,
Miyazawa, Feldman, Elsner, Hitczenko, & Mazuka, 2017). This is why it is essential to show
how computational models learn from uncurated speech, as has been done by, for example,
Miyazawa, Kikuchi, and Mazuka (2010); Miyazawa, Miura, Kikuchi, and Mazuka (2011);
Nixon and Tomaschek (2021); Schatz et al. (2021). At the same time, some of these studies
only evaluate models in terms of how well their representations match adult phonetic cate-
gories (Miyazawa et al., 2010, 2011), without looking at infants’ data. To test the viability of
the perceptual space learning account, it is important to test the models on actual behavioral
data from infants (i.e., from discrimination tasks), as has been done by Nixon and Tomaschek
(2021) and Schatz et al. (2021), without making assumptions about the underlying represen-
tations. Nixon and Tomaschek (2021) evaluate their model on the data from one language,
German. Therefore, the only study that considers crosslinguistic phone discrimination data is
Schatz et al. (2021), who tested one model on one phonetic contrast. Their model implements
a particular version of the perceptual space learning account, which we introduce in the next
section. At the same time, there is a variety of mechanisms that fit various versions of this
account in principle (Feldman et al., 2021). In this article, we consider additional models and
additional phonetic contrasts to further evaluate the account of early phonetic learning without
phonetic categories. If such models are able to successfully predict crosslinguistic differences
in infants’ phone discrimination, this can help us better understand which mechanisms the
infants are more likely to rely on.

2.2. Sources of information available to the learner

Typically developing infants can listen to the low-level speech signal and naturally learn
from it using distributional learning mechanisms, that is, by tracking the statistical distribu-
tion of phonetic variation (Maye, Werker, & Gerken, 2002). At the same time, there is evi-
dence that 6–8-month-old infants can segment and recognize some word forms in the input
(Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Jusczyk & Aslin, 1995; Jusczyk, Houston,
& Newsome, 1999), and it has been shown that such top-down guidance can aid the process of
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phonetic learning (Feldman et al., 2013; McMurray, Danelz, Rigler, & Seedorff, 2018). Both
of these strategies, which we call bottom-up and top-down, respectively, have been imple-
mented in computational models. Those computational models implemented phonetic cate-
gory learning theories and asked which sources of information could help models converge
on the correct set of categories for the training language.

Similar questions arise in the context of perceptual space learning. The computational
learner of Schatz et al. (2021), whose setup we follow in Study 1, uses a relatively simple
algorithm—Dirichlet process Gaussian mixture model—that clusters short slices of speech
(frames) in an unsupervised way. This algorithm implements a bottom-up distributional
learner, which only relies on the low-level information about the acoustic spectrum, or the
distribution of energy across various acoustic frequencies. At the same time, some of the
existing neural network models in the speech engineering literature implement the top-down
strategy by exposing the learner to acoustic words or word-size units (e.g., Kamper et al.,
2015; Thiollière, Dunbar, Synnaeve, Versteegh, & Dupoux, 2015). In Study 2, we employ
such top-down models to simulate early phonetic learning and compare them to the model of
Schatz et al. (2021) and to other, more closely matched, bottom-up models, in terms of their
ability to predict crosslinguistic patterns of phone discrimination observed in infants. There-
fore, our two studies can additionally inform the discussion on the usefulness of bottom-up
and top-down strategies for infant phonetic learning.

2.3. Infants’ phone discrimination data

Infants cannot be directly tested on tasks that require explicit instruction, and the field
predominantly relies on data from phone discrimination tasks (Bosch & Sebastián-Gallés,
2003; Best & McRoberts, 2003; Burns et al., 2007; Kuhl et al., 2006; Segal et al., 2016;
Tsao et al., 2006; Werker & Tees, 1984, etc.), using paradigms such as conditioned head turn
(Kuhl, 1979) or habituation (Best, McRoberts, & Sithole, 1988). While there are many studies
testing a group of infants on native and non-native contrasts (see, e.g., an overview for vowels
by Tsuji & Cristia, 2014), there are far fewer studies which test two groups of infants (native
and non-native) on the same phone contrast. We adopt the latter setup and focus on datasets
from three such experiments, based on the availability of corresponding speech corpora for
training computational models1:

1. Kuhl et al. (2006) tested American English and Japanese infants on the English [ɹ]–[l]
contrast. English- and Japanese-learning infants showed similar discrimination rates
for synthesized [ɹa]–[la] stimuli at the age of 6–8 months, but English-learning infants
showed higher rates at the age of 10–12 months. Similar findings are reported in
Tsushima et al. (1994).

2. Tsao et al. (2006) tested Mandarin Chinese and American English infants on the Man-
darin [C]–[ʨh] contrast. Mandarin- and English-learning infants showed similar dis-
crimination rates for synthesized [Ci]–[ʨhi] stimuli (commonly denoted in pinyin as
xi and qi, respectively) at the age of 6–8 months, but Mandarin-learning infants were
better at 10–12 months. This is also consistent with the results reported by Kuhl, Tsao,
and Liu (2003).
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Table 1
Training and test conditions

Dataset Test Language Training Language Listener Type

1 EN English (EN) Native
Japanese (JA) Non-native

2 ZH Mandarin (ZH) Native
English (EN) Non-native

3 CA Catalan (CA) Native
Spanish (ES) Non-native

3. Bosch and Sebastián-Gallés (2003) tested Catalan- and Spanish-learning infants on
the Catalan [e]–[E] contrast. At the age of 4 months both groups could discriminate
between pseudowords [deDi] and [dEDi] (in this case, stimuli recorded with human
speakers), but at 8 months only the Catalan group showed successful discrimina-
tion. Similar results are reported by Albareda-Castellot, Pons, and Sebastián-Gallés
(2011).

We use these three datasets to evaluate the computational models on their ability to correctly
predict the described qualitative crosslinguistic patterns of phone discrimination. The next
section provides methodological details of our simulation setup, data processing, and models.

3. Method

3.1. General setup of the simulations

We carry out two studies: Study 1 seeks to answer whether the model of Schatz et al. (2021)
correctly predicts two other crosslinguistic datasets in addition to the English–Japanese result
they report on. Study 2 tests four neural network models on the same three datasets. In
each study, we train computational models on unsegmented speech data from three datasets
(i.e., language pairs). Each dataset focuses on one phonetic contrast (such as American
English [ɹ]–[l]) for which crosslinguistic phone discrimination data for infants exist. For each
computational model, we train two different versions: a “native” model, which simulates a
learner of the language from which the contrast is drawn (American English, in this example),
and a “non-native” model, which simulates a learner of another language that does not contain
the relevant contrast (here, Japanese). Models are trained on corpora of natural speech. We
then test each model by simulating a phone discrimination task, using real examples from the
language where the contrast exists. To show an infant-like pattern, the “native” trained ver-
sion of the model should display better discrimination than the “non-native” trained version
of the model.

The training and test datasets are summarized in Table 1 and correspond to the experi-
ments with infants described in Section 2.1. Dataset 1 is designed to test models learning
American English and Japanese on the English [ɹ]–[l] contrast, where English learners show
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Table 2
Models of early phonetic learning used in our studies. The DPGMM was used by Schatz et al. (2021), the other
models have not been tested before in this capacity

Model Representation Type Top-Down Guidance

Dirichlet process Gaussian mixture model (DPGMM) Frames No
Autoencoder (AE) Frames No
Correspondence autoencoder (CAE) Frames Yes
Autoencoding recurrent neural network (AE-RNN) Word sized No
Correspondence-autoencoding recurrent neural network

(CAE-RNN)
Word sized Yes

better discrimination than Japanese learners. Dataset 2 is designed to test models learning
Mandarin Chinese and American English on the Mandarin [C]–[ʨh] contrast, where Mandarin
learners show better discrimination than English learners. Finally, dataset 3 is for testing
Catalan- and Spanish-learning models on the Catalan [e]–[E] contrast, where Catalan learn-
ers show better discrimination than Spanish learners. In the experiments with infants, each
phonetic contrast was tested in a particular phonetic context (e.g., [ɹa]–[la]). We report the
results averaged over all phonetic contexts (to have sufficient test data for our models), but
the results for the restricted contexts that were actually used in the experiments can be found in
Supporting Information S2.

3.2. Simulating phone discrimination tasks

To test a model’s ability to discriminate a phonetic contrast, similar to the tests carried
out with infants such as conditioned head turn, we use the machine ABX task (Schatz et al.,
2013).2 In this task, A and X are two instances of the same phone (e.g., [l]), while B is an
instance of a different phone (e.g., [ɹ]). Note that while the order of item presentation (A
followed by B or vice versa) is important in human experiments, it plays no role in our mod-
eling setup. If A and X are closer to each other in a model’s representation space than B
and X, the model’s prediction is correct, otherwise it is not. We use Kullback–Leibler (KL)
divergence to measure distances in the representations for one of the models (Dirichlet pro-
cess Gaussian mixture model [DPGMM]; see Table 2) and angular distance (which is similar
to cosine distance, but not the same) for the other models. For models using frame-level
representations (see Table 2), we align the frames in each pair of phones using dynamic
time warping (Vintsyuk, 1968) and compute the distance as an average over the frame-
wise distances. This method follows earlier studies (e.g., Jansen et al., 2013; Matusevych,
Kamper, Schatz, Feldman, & Goldwater, 2021; Schatz et al., 2021; Schatz, Bach, & Dupoux,
2018).

A model is evaluated by considering the proportion of ABX triplets for which it makes cor-
rect predictions: 0% error rate corresponds to perfect discrimination, 50% to chance perfor-
mance, and 100% means that for no triplets the discrimination was made correctly. Following
Schatz et al. (2021), we sample ABX test triplets in such a way that all three phones—A, B,
and X—appear in the same neighboring phonetic context and are uttered by the same speaker.
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This is a within-speaker version of the ABX task, which tests discrimination of phones
produced by the same speaker and which we believe better matches the setup of most dis-
crimination experiments with infants, compared to the across-speaker version. An alternative
to using the machine ABX task would be to test the model on the exact test stimuli from
the original experiments, but these are often synthesized. Using synthetic stimuli to test a
computational model trained on natural speech could make the model perform poorly due to
a confounding factor, the quality of mapping between synthetic stimuli and natural speech.3

Therefore, we only test whether a model can discriminate natural speech stimuli in a way
similar to human infants by using the machine ABX task, which is a conceptual analogue of
infant discrimination studies that is robust to the noise in the data given the large number of
data points.

To test whether the difference between the ABX error rates in a given pair of simulated
listeners (native vs. non-native) is significant, we fit mixed-effects regressions (using the lme4
package; Bates, Mächler, Bolker, & Walker, 2015) to the error rates of the two models in
question. Each regression includes main effects of simulated listener type (native vs. non-
native) and data subset (as shown in Table 3 in Section 3.4) and random intercepts, to account
for the variation among data subsets, speakers, and phonetic contexts. In the Mandarin data,
tones often substantially change the pitch contour of the vowel, and we consider vowels (but
not consonants) to be different if they come from syllables with different tones: for example,
in syllables [Ci

Ă
£] and [CiĘ£] the target consonant [C] is considered to be the same phone, but

the right context is different: [i
Ă
£] versus [iĘ£]. Significance for the effect of simulated listener

type is then determined using two-tailed analysis of variance tests (with Satterthwaite degrees
of freedom approximation; Kuznetsova, Brockhoff, & Christensen, 2017) on the predicted
values of the regressions.4

3.3. Computational models

In total, we consider five models: the one used in Schatz et al. (2021) in Study 1, and four
neural network models inspired by existing work in unsupervised speech representation learn-
ing in Study 2. All these models show high performance in low-resource speech technology
applications, making them a good starting point for modeling unsupervised infant learning.
In addition, at test time all the models provide a way to compute distances between speech
sequences (in this case, phones) of any duration. The models differ along two dimensions,
as summarized in Table 2. Three of the models learn representations at the level of speech
frames (i.e., 25-ms-long chunks of speech commonly used in automatic speech recognition),
while two learn to encode word-sized units of variable length as vector representations of
fixed length (i.e., acoustic word embeddings, analogous to the semantic word embeddings
often used as vector representations of word meaning). This distinction also corresponds to
how the models deal with the time dimension: for the first three models, temporal informa-
tion is encoded only weakly, by including first- and second-order derivatives of the acoustic
spectrum in the representations of individual frames (see Section 3.4), while for the other two
models the order of frame presentation is important too. In addition, three models are strictly
unsupervised (i.e., bottom-up learners), while two others rely on top-down guidance from
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10 of 39 Y. Matusevych et al. / Cognitive Science 47 (2023)

Table 3
Corpus samples used in the simulations

(a) Training data

Dataset Language Sample Corpus Register Amount of Data (hh:mm) Number of speakers

1 EN A WSJ Rd 19:30 96
JA B GP Rd 19:33 96
EN C Buckeye Sp 9:13 20
JA D CSJ Sp 9:11 20

2 ZH A AIShell Rd 58:59 166
EN B WSJ Rd 58:49 166
ZH C GP Rd 11:51 48
EN D WSJ Rd 11:49 48

3 CA A Glissando Rd+Sp 7:41 26
ES B Glissando Rd+Sp 7:41 26
CA C Glissando Rd+Sp 7:02 17
ES D Glissando Rd+Sp 7:03 17

(b) Test data

Dataset Language Sample Corpus Register Amount of Data (hh:mm) Number of speakers

1 EN E WSJ Rd 9:39 47
F Buckeye Sp 9:01 20

2 ZH E AIShell Rd 58:45 165
F GP Rd 11:51 48

3 CA E Glissando Rd+Sp 1:15 2
F Glissando Sp 2:19 11

Note. WSJ refers to the Wall Street Journal CSR corpus (Paul & Baker, 1992), GP to the Globalphone, a
multilingual text and speech database (Schultz, 2002), Buckeye to the Buckeye corpus of conversational speech
(Pitt, Johnson, Hume, Kiesling, & Raymond, 2005), CSJ to the corpus of spontaneous Japanese (Maekawa, 2003),
AIShell to the open-source Mandarin speech corpus (Bu, Du, Na, Wu, & Zheng, 2017), and Glissando to the
corpus for multidisciplinary prosodic studies in Spanish and Catalan (Garrido et al., 2013). For training dataset
2, we used two different samples (2B and 2D) from the English WSJ corpus, to match the data available in the
respective samples (2A and 2C) from the Mandarin AIShell and GP corpora. For dataset 3, we used two different
training/test splits (3A/3E and 3C/3F) from the same Catalan corpus. For dataset 1, all training/test combinations
originated from different corpora and therefore were considered (i.e., 1A and 1B tested on 1E, 1A and 1B tested on
1F, etc.). For the other two datasets, to ensure that no data from the same speakers appeared both in the training and
in the test data, some training/test combinations were excluded from the analyses: 2C and 2D were not tested on
2F; 3A and 3B were not tested on 3F; 3C and 3D were not tested on 3E. Rd and Sp stand for read and spontaneous
speech registers, respectively.

known word forms. In all cases, we use existing implementations developed for processing
speech without supervision or with a weak teaching signal from the word level (Kamper et al.,
2015; Kamper, 2019; Schatz et al., 2021), we adopt the previously used training options, and
we do not retune hyperparameters. A description of each model is provided in the sections for
the individual studies below.
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Y. Matusevych et al. / Cognitive Science 47 (2023) 11 of 39

3.4. Input to the models

To prepare input to the models from unsegmented speech data, we follow a standard
approach in speech processing: we divide the speech data into 25-ms-long frames (sampled
every 10 ms) and extract mel-frequency cepstral coefficients (MFCCs), together with their
first- and second-order time derivatives, from each frame using Kaldi (Povey et al., 2011).
The frequency range is set to be within the standard Kaldi values of 20 and 7,800 Hz (i.e.,
close to 0 and 8,000 Hz, respectively, where the latter value is the Nyquist frequency equal
to half of our sampling rate of 16,000 Hz). The MFCCs encode the auditory spectrum for
each frame, while the first- and second-order derivatives encode the change of this spectrum
over time. The three types of features are concatenated, resulting in a vector of 13 × 3 = 39
features. Representing speech using its auditory spectrum is grounded in human auditory pro-
cessing and is different from traditional accounts of phonetic learning, which assume phonetic
feature detectors (see Schatz et al., 2021, for further discussion).

Additionally, for testing the models on the ABX discrimination of individual phones, as
described in Section 3.2, we need to extract a series of frames (i.e., “chunks” of speech) cor-
responding to the target phones. To identify which frames correspond to which phone, we use
phone alignments, that is, labels that map a series of frames to their corresponding phones.
We obtain such alignments using the Montreal Forced Aligner (McAuliffe, Socolof, Mihuc,
Wagner, & Sonderegger, 2017); lists of phones that we used are provided in Supporting
Information S1.5

Ideally, we would use transcribed high-quality speech recordings of infant-directed speech.
Such recordings may be available for English but are difficult to obtain for other languages.
Because we needed matching samples (in terms of the register, number of speakers, etc.) to
train the native and the non-native version of the model (e.g., English–Japanese, Mandarin–
English), we used various other corpora in our simulations. In each case, we train and test
models on two different subsets of speech data per language, in order to ensure that the
results for each model are robust across various datasets. Ideally, each subset should come
from a different corpus, and the corpora should represent two different speech registers:
spontaneous and read, which was the approach taken by Schatz et al. (2021). In practice,
our choices are limited to the available speech corpora, so that for the Mandarin–English
simulations (dataset 2) we use corpora of read speech only, and for the Catalan–Spanish
simulations (dataset 3) all our data come from the same bilingual corpus (see Table 3). In
all cases, we ensure that no data from the same speakers appear both in the training and the
test data. To further reduce potential variability across corpora, we sample the audio signal in
each corpus at 16 kHz and balance the speakers’ gender within each corpus sample.

We now turn to our two studies that follow this methodological setup.

4. Study 1: Testing the DPGMM on other phonetic contrasts

In this study, we run the simulations described above using the model of Schatz et al.
(2021). Training and testing the model on dataset 1 here effectively reproduces their study,
while datasets 2 and 3 enable us to test whether their model can correctly predict the
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12 of 39 Y. Matusevych et al. / Cognitive Science 47 (2023)

discrimination patterns found in Mandarin- versus English-learning and Catalan- versus
Spanish-learning infants. In other words, this study reproduces and extends the work of
Schatz et al. (2021) to new phonetic contrasts.

4.1. Model description

The model is a DPGMM (Chen, Leung, Xie, Ma, & Li, 2015) based on a commonly used
Gaussian mixture clustering algorithm. Specifically, the DPGMM is a probabilistic genera-
tive model that takes individual speech frames as input and groups them into “soft” clusters
(Gaussian components), that is, each frame can be assigned to multiple clusters with various
probabilities. As described above in Section 3.4, each frame is represented as a vector that
includes MFCC features and their time derivatives. A frame is considered to have been gener-
ated by a mixture of Gaussian probability distributions. Based on how likely each frame is to
originate from each distribution, the model updates the mixture weights and the parameters of
these distributions. More specifically, the model maximizes the likelihood of the data sample
using Bayesian inference, specifically parallel Markov chain Monte Carlo sampling, follow-
ing Chang and Fisher III (2013); Schatz et al. (2021). The model is non-parametric: that is, the
number of clusters is not specified in advance but is derived from the data. It learns in a fully
unsupervised bottom-up manner. The result of the learning process is a mixture of Gaussian
components (clusters) fitted to the training data in the vector space of MFCC features and
their derivatives.

For testing, we first represent each test frame into the same vector space as the training
frames: each frame is encoded using the same MFCC feature extraction process as during the
training phase (including the extraction of derivatives). We then can compute the probability
of a test frame given each component. The model’s output for each frame is, therefore, a
vector of posterior probabilities with a size equal to the number of Gaussian components
in the model, or a posteriorgram. A sequence of speech frames (in our case, a phone) is
encoded in the model’s representation space as a sequence of posteriorgrams. In this space,
distances between phones (in our case, KL divergence) can be computed to perform the ABX
discrimination task as described above in Section 3.2.

We use the DPGMM implementation6 based on Chang and Fisher III (2013) and Schatz
et al. (2021) and parameter settings from Schatz et al.: the model is initialized with 10 clus-
ters and is trained for 1,500 iterations, at which point there are between 348 and 1,535
clusters in our simulations. This high number is consistent with Schatz et al. (2021), who
found that the learned clusters are much more fine-grained than phonetic categories. The
exact number of clusters depends on the size of the training data (i.e., larger datasets yield
more clusters), the language (e.g., more clusters in models trained on Japanese vs. English),
and potentially other factors that contribute to the amount of variation in the training data.
We refer to the Appendix and the two above-mentioned studies for a more detailed model
description.

4.2. Results

The model’s ABX error rates across languages are shown in Fig. 1, together with the
average performance of each model across all consonant (for English and Mandarin Chinese)
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Y. Matusevych et al. / Cognitive Science 47 (2023) 13 of 39

Fig. 1. ABX error rates of the native and non-native DPGMM models in the three discrimination tasks (EN [ɹ]–[l],
ZH [C]–[ʨh], and CA [e]–[E]). The number of data pairs (i.e., different speaker–phonetic context combinations) in
each test set is shown on top of each bar. Red lines indicate model’s error rates averaged over all consonant (for
EN and ZH) or all vowel (for CA) contrasts, with the number of different contrast–speaker–context combinations
varying between approximately 10K for CA to 53K for ZH to 260K for EN. To match the infant pattern of
discrimination, the native model in each pair must show significantly lower error rates than the non-native model.
The number of asterisks denotes significance level: ∗∗∗ corresponds to p < .001 and ∗∗ to p < .01.

or vowel (for Catalan) contrasts (red lines in the figure). In this figure, results are averaged
over multiple ABX triplets, speakers, neighboring phonetic contexts, and subsets of the cor-
pus, but the mixed-effects models fitted to the data take into account all of these variables
(as previously discussed in Section 3.2). The reported patterns are consistent over the two
corpus subsets. In what follows, we compare the performance of each simulated “native”
listener to its corresponding simulated “non-native” listener. Note that comparing the abso-
lute error rates across the datasets (i.e., language pairs) is not meaningful, as the amount of
training data and number of speakers differed depending on the dataset, and interpreting the
magnitude of the differences between native versus non-native model across the datasets may
not always be straightforward.7 In dataset 1, where the models are tested on the English [ɹ]–
[l] contrast, the model correctly predicts the discrimination pattern observed in infants: the
error rate of the simulated native listener is significantly lower compared to the simulated
non-native listener (10.0% vs. 14.1%). This reproduces the result of Schatz et al. (2021).
On this contrast, both native and non-native models show the discrimination error compa-
rable to the average error rates on all English consonant contrasts (red lines in the figure;
8.3% and 9.3% for the native and non-native model, respectively). In other words, the [ɹ]–[l]
contrast is only somewhat more difficult to discriminate than an average English consonant
contrast.

In dataset 2, with the Mandarin [C]–[ʨh] contrast, the model also correctly predicts the
infants’ discrimination pattern: the error rates are significantly lower in the simulated native
than in non-native listener (19.2% vs. 21.1%). This difference of 1.9% is smaller than on the
English contrast in dataset 1 (4.1%), possibly because this is a generally difficult contrast to
learn for the model. Indeed, the discrimination error on this contrast is noticeably higher than
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14 of 39 Y. Matusevych et al. / Cognitive Science 47 (2023)

the average error over all Mandarin consonant contrasts (red lines; 5.3% and 6.8% for native
and non-native model, respectively). In other words, the [C]–[ʨh] discrimination is difficult
for the model. This may be due to the kinds of phones in this contrast: one of them, [C], is a
fricative; the other, [ʨh], is an affricate, which sounds a bit like a combination of a short [t]
followed by a “breathy” version of [C]. An example of a similarly sounding fricative–affricate
distinction in English is the difference between the first phones in cheap versus sheep. As a
result, one of the phones, [C], is almost a “subchunk” of the other phone, [ʨh], a distinction
potentially difficult to learn for our models. Nevertheless, the native model shows a lower
error rate than the non-native model.

In dataset 3, the model predicts no significant difference for the Catalan [e]–[E] contrast.
In general, this contrast is more difficult for both native and non-native models (32.5% and
40.3% error, respectively) than an average Catalan vowel contrast (17.7% and 18.5%), and
we discuss possible reasons for that below.

4.3. Summary

We have reproduced the result of Schatz et al. (2021) and also shown that their DPGMM
model can correctly predict the crosslinguistic differences in infants’ phone discrimination
on another contrast from Mandarin Chinese. At the same time, the model struggles with
predicting the infants’ data for the Catalan contrast. On the one hand, this may be because of
the smaller size or potentially lower quality of the Spanish–Catalan dataset. On the other hand,
there is a chance that the DPGMM model is simply not a good model of phonetic learning. For
example, in the domain of phonetic category learning, bottom-up distributional models have
been shown to perform poorly when trained on uncurated data (e.g., Antetomaso et al., 2017),
and it has been argued that infants can use top-down guidance (i.e., word-level information) to
constrain phonetic learning (Feldman et al., 2013; McMurray et al., 2018; Swingley, 2009). In
the speech engineering literature, word-level information has been integrated into some of the
neural network models, and, in the next section, we test two such models, together with two
corresponding models without top-down guidance, to see whether they can correctly predict
the crosslinguistic patterns for the three target contrasts.

5. Study 2: Testing other models

In this section, we train and test four neural network models on the same three datasets
as before. These models have been proposed in speech technology research, in particular
in low-resource settings where transcribed data may not be available and showed high
performance in word and phone discrimination tasks (Kamper et al., 2015; Kamper, 2019;
Matusevych et al., 2021; Renshaw, Kamper, Jansen, & Goldwater, 2015). Fig. 2 schemati-
cally shows the difference between the models’ architectures and input data. We consider two
different versions of the models with top-down supervision (see the two panels on the right in
Fig. 2), which differ from each other in the kinds of representations they learn: frames versus
word-sized units. To be able to tell how much the word-level information is contributing, we
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Fig. 2. Neural network models used in Study 2. The AE and the CAE learn frame-level representations, while
the AE-RNN and the CAE-RNN are recurrent models and learn word-sized representations. The AE and the AE-
RNN are strictly autoassociative and reconstruct the input unit X itself (orange), while the CAE and the CAE-RNN
reconstruct a different instance X ′ (blue) of the same type as the input unit X (orange). The layers from which we
extract the models’ representations are shown in pink and marked with an asterisk (*).

also consider the corresponding versions of these models that have the same architectures
but are trained without top-down guidance (see the two panels on the left in Fig. 2). It is
worth noting that these simpler versions have also been proposed as representation learning
models in speech technology research in their own right, so it is possible that they will
show good performance even without the word-level information. Below we provide a brief
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description of each model, while formal definitions and parameter settings are summarized
in the Appendix.

5.1. Models’ description

All four models are based on the idea of autoassociative learning: they are provided with
an input and an identical (or a very similar) output and try to reconstruct the output from the
input. While autoassociators do not implement a biologically plausible learning mechanism
at the algorithmic level, they are commonly used in cognitive science for unsupervised rep-
resentation learning. They use gradient descent to slowly adjust neural connections between
layers in order to minimize a given reconstruction loss. We are primarily interested in the
models with top-down supervision, but we first introduce one of the corresponding baseline
models (i.e., without top-down supervision) to ease the understanding.

A basic version of the autoassociative learning mechanism is implemented in an autoen-
coder (AE; top left panel in Fig. 2), a classic unsupervised feedforward neural network pop-
ularized by Kramer (1991). In our case, this is a “stacked” autoencoder consisting of input,
output, and multiple fully connected layers (see the Appendix). While it is common to intro-
duce a “bottleneck” layer in the middle, which forces the model to compress the information,
we use the implementation of Kamper et al. (2015),8 who found no benefit of using such a
layer in a word discrimination task. The model reconstructs the input frame X (the orange
vectors in Fig. 2, top left panel) and learns by minimizing the mean squared error between
the original and the reconstructed frame. This is a fully unsupervised model that does not use
any top-down guidance. The learning results in the emergence of latent representations in the
model’s hidden layers. Following Kamper et al.’s (2015) approach, we use the second-last
layer for encoding our test data: for a given speech frame, we compute the vector encoding
of the frame in that layer. A phone is then represented as a sequence of such vectors, and
the distances (in this case, angular distances computed with dynamic time warping, see Sec-
tion 3.2) between phones are computed for running the ABX discrimination task as described
in Section 3.2.

In Fig. 2, we see how the basic stacked AE can be extended along two orthogonal dimen-
sions. First, the model can be trained in a slightly different manner, so that it reconstructs
not the same speech sequence (i.e., a spoken word), but another similar sequence (a different
instance of the same word). This is the idea behind the correspondence autoencoder (CAE;
Kamper et al., 2015, see the top right panel in Fig. 2). Instead of trying to encode and recon-
struct each input frame to itself, as is done in the AE, it is given a pair of corresponding frames
from two instances of the same word. The model tries to reconstruct a particular frame X ′ in
one instance of a word from the aligned frame X in the other instance, one frame at a time
(cf. top left and top right panels in Fig. 2, where the blue color indicates a frame X ′ that is
different from the orange frame X ). Note that the two acoustic instances of the same word
would normally have different duration (i.e., different number of frames), and the correspon-
dence between frames across the two instances is established using dynamic time warping
(Vintsyuk, 1968). In this article, we obtain the pairs of word instances in a supervised way
using forced alignment (a by-product of phone-level alignments described in Section 3.4),
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though unsupervised alternatives are possible (Kamper, 2019). Because the model learns by
reconstructing a speech signal into a different version of that signal, the encoded representa-
tion must focus on linguistically meaningful information and abstract away from other vari-
ation between the aligned frames. Importantly for us, the top-down guidance in the form of
weak word-level supervision can aid the process of early phonetic learning, as we mentioned
earlier. We use the same codebase as for the AE. Again, at test time each frame is encoded in
the model’s second-last layer, and the angular distances are computed in the resulting repre-
sentation space.

Second, one can change the basic architecture of the AE model by turning it into a recurrent
model capable of encoding sequential information. The bottom left panel in Fig. 2 shows such
a model, autoencoding recurrent neural network (AE-RNN; Chung, Wu, Shen, Lee, & Lee,
2016). It is a sequence-to-sequence autoencoder, a type of AE in which both the encoder and
the decoder are recurrent neural networks (RNNs). RNNs are commonly used in language
modeling (see Linzen, 2019, for an overview), as they can process an input sequence as a
whole. In our case, the model is given a random word-sized chunk of speech, X , although not
necessarily a real word, one frame at a time, encodes it into a vector of fixed dimensionality,
and then uses this vector to reconstruct the same chunk sequentially, frame-by-frame (see
the bottom left panel in Fig. 2, where the orange vectors represent the model’s input/output
frames). Here, we consider the model’s middle, or acoustic embedding layer, in which speech
sequences are represented as fixed-dimensional vectors. We encode the test phones into this
embedding space and compute angular distances between them to run the ABX task. We use
the implementation by Kamper (2019).9

Finally, introducing both these changes at the same time yields our final model, a
correspondence-autoencoding recurrent neural network (CAE-RNN; Kamper, 2019, see the
bottom right panel in Fig. 2). This is similar to the AE-RNN, but instead of training on ran-
dom chunks of speech, it is trained on pairs of instances of the same word (X and X ′ in the
bottom right panel in Fig. 2; note the two colors indicating different instances of the same
word)—i.e., like the CAE, it also relies on weak top-down supervision (cf. top right and bot-
tom right panels), and in our study the pairs of word instances were obtained in a supervised
way using forced alignment (as for the CAE). We use the same codebase as for the AE-RNN
and the same approach to compute the distances between phones.

Based on the differences between the four models, we can look for two patterns in the
models’ ability to predict the infants’ data. As we pointed out in Section 3.3, because the AE
and the AE-RNN do not require supervision from the word level, they are bottom-up models
(cf. Table 2), whereas the CAE and the CAE-RNN receive additional top-down guidance. If
the two latter, but not the former, models show infant-like discrimination patterns, it can be
seen as additional computational evidence that top-down strategies can potentially be benefi-
cial for phonetic learning (Feldman et al., 2013; Swingley, 2009). Also, the AE and the CAE
learn frame-level representations and represent test phones as sequences of vectors, whereas
the AE-RNN and the CAE-RNN encode word-sized units and represent each test phone as
a fixed-dimensional vector. If the two latter, but not the former, models show infant-like dis-
crimination patterns, this means that the holistic processing of longer units (word-sized during
training, phone-sized during testing) may be beneficial for simulating phonetic learning. Note,
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Fig. 3. ABX error rates of the native and non-native neural network models in the three discrimination tasks
(EN [ɹ]–[l], ZH [C]–[ʨh], and CA [e]–[E]). The number of data pairs (i.e., different speaker–phonetic context
combinations) in each test set is shown on top of each bar. Red lines indicate models’ error rates averaged over
all consonant (for EN and ZH) or all vowel (for CA) contrasts. To match the infant pattern of discrimination, the
native model in each pair must show significantly lower error rates than the non-native model: out of five total
patterns with a significant difference, four are in the predicted direction (black brackets) and one is in the wrong
direction (orange bracket). The number of asterisks denotes significance level: ∗∗∗ corresponds to p < .001, and ∗∗

to p < .01.

however, that we only test specific implementations of the four models and do not change
their architecture or retune hyperparameters, so the patterns we observe may not generalize
to all instantiations of these models, and should be interpreted only as preliminary evidence.
Most importantly, however, we are interested to know whether any of the models described
above would show infant-like discrimination ability equal or better than the DPGMM model
in Study 1.

5.2. Results

Fig. 3 shows the ABX error rates of the four models. In dataset 1 (the English [ɹ]–[l]
contrast), two models—the CAE and the CAE-RNN—correctly predict the discrimination
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pattern observed in infants: the error rate of the simulated native listener is significantly lower
compared to the simulated non-native listener (CAE: 5.8% vs. 8.2%, CAE-RNN: 13.4% vs.
19.2%). The AE shows no significant difference between the two types of simulated learn-
ers (6.1% for both), and the AE-RNN predicts a significant difference in the wrong direc-
tion (i.e., lower error rate in the non-native listener: 19.7% vs. 16.2%). As in Study 1, all
models’ error rates are comparable to the average error rates on English consonant contrasts
(red lines in the figure). This suggests that the English [ɹ]–[l] contrast is generally easy to
discriminate.

In dataset 2 (the Mandarin [C]–[ʨh] contrast), a different set of two models—the AE-RNN
and the CAE-RNN—correctly predict the infants’ discrimination pattern (AE-RNN: 26.6%
vs. 30.0%; CAE-RNN: 25.9% vs. 30.5% for native vs. non-native listener). Two models—
the AE and the CAE—predict no significant difference between the simulated native and the
non-native listener (AE: 18.1 for both; CAE: 16.1 vs. 16.0). As in Study 1, over all models,
the discrimination error on this contrast is noticeably higher than the average error over all
Mandarin consonant contrasts, suggesting that the [C]–[ʨh] discrimination is difficult (relative
to other Mandarin consonant contrasts) for all models. Note, however, that on this contrast the
CAE-RNN shows a difference of 4.6% between the native versus non-native listener, which
is larger compared to the DPGMM model in Study 1 (1.9%). This may indicate that the CAE-
RNN makes more robust predictions on this contrast than the DPGMM, but the evidence is
weak.

In dataset 3, no model predicts a significant difference for the Catalan [e]–[E] contrast
(AE: 33.3% vs. 33.4%; CAE: 32.5% vs. 32.6%; AE-RNN: 40.3% vs. 39.5%; CAE-RNN:
39.6% vs. 37.2%). Note that the models’ average error rates on Catalan are generally high,
suggesting that the models could benefit from additional training data. At the same time,
speaker idiosyncrasies in the test data are unlikely to affect the results, as we observe no
meaningful differences in the discrimination error across the two test samples (consisting of
data from 2 vs. 11 speakers; see Table 3). Thus, all models struggle to discriminate the Catalan
[e]–[E] contrast as well as to reproduce empirically observed crosslinguistic differences in
its discrimination.

At the end of Study 1, we considered a possibility that the DPGMM model did not make
correct predictions on the Catalan data because it might not be a good model of phonetic
learning. If that was true, the results from this study could suggest that none of our mod-
els make good models of early phonetic learning. But given their correct predictions on the
English and the Mandarin contrasts, it is worth considering other explanations of the models’
incorrect predictions on the Catalan contrast and overall high discrimination error rates. To
determine possible reasons why this contrast was particularly difficult for the models, we car-
ried out additional analyses. First, we looked at various subsets of the test data controlled for
the neighboring phonetic context, yet still did not find infant-like discrimination patterns in
any model (see Supporting Information S2). Second, we looked at the duration of the target [e]
and [E] vowels in the test data, which revealed that some instances were very short, compared
to the lab stimuli used with infants. Because we could not obtain the original stimuli of Bosch
and Sebastián-Gallés (2003) from the authors, we instead filtered out very short (< 80 ms)
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phones from the test data. This reduced the overall error rates but still yielded similar per-
formance between the “native” and “non-native” models. Third, we asked whether the target
contrast can be learned from the training data at all. As an upper-bound baseline, we trained
and tested a supervised phoneme recognizer model (see the Appendix) on the same data, and
the error rates for the target contrast were still high, although somewhat lower than for our
models, 31.5 ± 2.8%. This suggests that either the target contrast is very difficult to learn
from this dataset or the test data are noisy. At the same time, a Spanish phoneme recognizer
model that we trained on the same Spanish data showed significantly higher error rates on the
Catalan contrast, 41.4 ± 0.2%, suggesting that a supervised model can correctly predict the
infants’ phone discrimination pattern.

To summarize, none of the models could capture all three crosslinguistic discrimination
patterns. At the same time, the CAE-RNN, just like the DPGMM in Study 1, correctly pre-
dicts two patterns out of three. The CAE and the AE-RNN only predict one pattern each,
while the AE makes no correct predictions. On the one hand, because the CAE-RNN and
the DPGMM make equally good predictions, comparing just these two models does not let
us conclude which of their mechanisms better explain infants’ phone discrimination. On the
other hand, recall that our four neural network models are matched on two dimensions and
we can look more closely at how the models’ predictions differ along those dimensions. If
we first compare the two models with the top-down strategies (the CAE and the CAE-RNN)
to the two corresponding models without such strategies (the AE and the AE-RNN), we can
see that the top-down strategies can be beneficial for phonetic learning. Second, if we compare
the two models which process word-sized units holistically (the AE-RNN and the CAE-RNN)
to those that do not (the AE and the CAE), we find that the holistic processing can potentially
benefit the models’ predictions as well. These results, however, should be interpreted with
caution, as there is no guarantee that similar patterns would replicate in other classes of mod-
els: that is, designing a mechanism to provide the DPGMM with word-sized units would not
necessarily improve its predictions.

The two models that perform best in our two studies—the DPGMM and the CAE-RNN—
use very different learning algorithms and representation formats, effectively presenting two
alternative hypotheses about early phonetic learning, yet they make qualitatively identi-
cal predictions regarding the crosslinguistic discrimination of three phone contrasts. Both
hypotheses have been argued for in the literature on early phonetic learning. The DPGMM
embodies a purely distributional bottom-up learning account (see Schatz et al., 2021, for a
detailed account), while the CAE-RNN brings in the top-down guidance from the word level
(Swingley, 2009). Therefore, our results on the English and the Mandarin contrast are compat-
ible with both theories. But because these are contrasting theories in the acquisition literature,
the field could benefit from a method that could distinguish between them computationally.
This is why in the next section we use the two models—the DPGMM and the CAE-RNN—to
make predictions about the difficulty of discrimination of specific phone contrasts which have
not yet been tested with infants.
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Table 4
Contrasts for which the DPGMM and/or the CAE-RNN predict robust crosslinguistic differences in the discrimi-
nation difficulty. All contrasts are predicted to be easier to discriminate for the English learner than for the Japanese
learner.

DPGMM CAE-RNN

Contrast Mean Difference Contrast Mean Difference

[n]–[ɹ] 4.9 [f]–[z] 6.9
[d]–[ɹ] 4.9 [2]–[OU] 5.8
[Ç]–[l] 4.9 [f]–[s] 5.5
[Ç]–[I] 4.9 [l]–[ɹ] 4.8
[h]–[ɹ] 4.6 [m]–[ɹ] 4.5
[2]–[Ç] 4.4 [ɹ]–[w] 4.5
[m]–[ɹ] 4.5 [2]–[AU] 4.3
[D]–[ɹ] 3.8 [A]–[2] 3.0
[l]–[ɹ] 3.7
[ɹ]–[v] 3.4
[ɹ]–[t] 2.6

6. Models’ predictions for other phone contrasts

In this section, we identify phone contrasts for which the two models—the DPGMM and
the CAE-RNN—make different crosslinguistic predictions in the discrimination tasks. We
follow the general method of Schatz et al. (2021) for deriving models’ predictions. We only
focus on dataset 1—that is, English and Japanese models tested on English phone contrasts.

We first split our English and Japanese training corpora into 10 parts and train the DPGMM
and the CAE-RNN on 1/10th of the data. As in our Studies 1 and 2 above, for each model
we compute ABX discrimination scores for all English contrasts in the native (English) and
the non-native (Japanese) versions of that model. We then compute the differences between
the ABX scores of the native versus non-native version on each English phone contrast and
look for the contrasts with robust crosslinguistic discrimination differences. A difference is
considered robust when it is (1) significantly different from zero across the 10 data subsets for
each corpus and (2) in the same direction across the two training/test data registers. These two
criteria are based on the method of Schatz et al. (2021), but are somewhat relaxed compared
to theirs, to ensure we obtain robust predictions from both models. To give an example, the
[ɹ]–[l] contrast should be more difficult to discriminate for the Japanese model than for the
English model when trained and tested on read speech as well as on spontaneous speech, and
this difference in the discrimination difficulty should be statistically significant, in order for
the difference to be considered robust.

We report the contrasts with such robust differences in Table 4. Note that both models
predict that some contrasts are easier to discriminate for the native (English) than non-native
(Japanese) learner, and no contrasts are predicted to have robust differences in the opposite
direction. For the DPGMM, we see that the robust differences are only detected for con-
trasts involving the rhotic consonant [ɹ] or the rhotacized vowel [ɝ]. This is less so for the
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CAE-RNN: while its predictions also include three contrasts with [ɹ] (but not [ɝ]), there
are also contrasts with fricative sounds ([f]–[z] and [f]–[s]), as well as vowel contrasts, all
of which involve [2] (none of these contrasts are phonemic in Japanese). First, the mod-
els’ predictions can be directly used to inform future research on early phonetic learning, as
infants can be directly tested on the contrasts for which our models predict crosslinguistic
differences, and the results of those tests can be further used to understand which model is
a better model of early phonetic learning. In particular, if Japanese-learning infants would
show significantly worse discrimination rates than English-learning infants on contrasts with
the rhotacized vowel [ɝ] (but not on fricative consonant contrasts or the vowel contrasts with
[2]), this would speak in favor of the DPGMM model. The reverse pattern—i.e., difficulties
with fricatives and [2], but not [ɝ]—would speak in favor of the CAE-RNN model. Note,
however, that the absence of a particular phonetic contrast in Table 4 does not mean that the
model predicts no difference for that contrast, but rather no robust difference. In other words,
if Japanese-learning infants show more difficulties on, for example, [2]–[OU] contrast (which
only appears among the CAE-RNN predictions) than English-learning infants, this does not
necessarily rule out the DPGMM model.

Second, these results show that the two models do not make identical predictions on various
phone contrasts. This is a positive result, because, as we mentioned above, experiments with
infants can help us distinguish between the two models.

At the computational level, an analysis of the models’ representations can help us under-
stand what leads to different predictions. Below, we focus on comparing the models’ rep-
resentations to adult-like phonetic categories. Recall that the models we are using simulate
perceptual space learning, a framework that challenges the existing accounts which attribute
infants’ behavior to phonetic category learning. This is why we are interested to know whether
the representations that the two models learn contain readily accessible information about
adult-like phonetic categories. We address this question in the next section.

7. Analyzing models’ representations

We have considered five models that implement various versions of perceptual space learn-
ing. Because these models do not rely on symbolic representations of phones, it would be
helpful to know what kind of representations they learn. Here, we analyze the representations
that emerge in the DPGMM and the CAE-RNN, the two models that correctly predicted two
out of three crosslinguistic patterns of phone discrimination in our two studies. Representa-
tion analysis methods are commonly used to study not only neural networks but also phone
encoding in the human brain (e.g., Evans & Davis, 2015; Levy & Wilson, 2020; Reh, Hensch,
& Werker, 2021).

The DPGMM representations have been earlier studied by Schatz et al. (2021), who showed
that the individual Gaussian components in the model do not correspond to phonetic cat-
egories: the number of components was an order of magnitude larger than the number of
phonetic categories in English, and each component was on average activated only for under
20 ms, much shorter than the average duration of a phoneme. It is an important result that
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the models of perceptual space learning, such as the DPGMM, do not use explicit phonetic
categories yet make correct predictions about infants’ phone discrimination. However, it is
possible that categories may still be found implicitly in the model’s posteriorgram space.
Here, we look for structure in the representation spaces of both the DPGMM and CAE-RNN,
by running unsupervised clustering and supervised classification of phone instances encoded
in the two models’ representation spaces, as explained below in the respective sections.

For both clustering and classification, we consider the DPGMM and the CAE-RNN model
trained on a specific corpus (e.g., WSJ) and use a test sample from a different corpus in the
same language (here, Buckeye for English). From the test corpus, we sample 100 acoustic
realizations of each phone and remove phones which appear fewer than 100 times in the cor-
pus. We consider the model’s representations for that sample and compute pairwise distances
(KL divergence for the DPGMM and angular distance for the CAE-RNN, for consistency
with our ABX discrimination simulations) between all phone instances. These distances are
then used in both clustering and classification tasks as described below. Note that this is dif-
ferent from the comparison of crosslinguistic discrimination patterns in Studies 1 and 2. First,
here we only consider models trained and tested on the same language: English, Japanese,
or Mandarin. Second, we only consider models trained and tested on samples from different
corpora to exclude the possibility that our models learn some corpus-specific properties (e.g.,
register or channel effects) that could make clustering and classification easier. For this rea-
son, we do not consider Spanish and Catalan models here, for which we only have a single
corpus (as shown in Table 3). At the same time, we do provide the relevant results for these
two languages in the Supporting Information S3.

As an upper-bound baseline, we additionally train and test a supervised phoneme recog-
nizer (see the Appendix) on the same datasets to analyze its representations using an analo-
gous setup.

7.1. Clustering

Cluster quality. First, we examine whether phone instances in each model’s representation
space naturally group into clusters that align with adult-like phonetic categories. We split the
data described above in Section 7 into 10 equal parts (10 acoustic realizations per phone)
for robust estimation and, using the distance matrices between phone instances, we run an
agglomerative hierarchical clustering algorithm, with the number of clusters equal to the true
number of different phones in the sample. Following some of the existing studies that compare
unsupervised clusters to phonetic categories (Frank, Feldman, & Goldwater, 2014; Shain &
Elsner, 2019), we use three information-theoretic measures ranging from 0 to 1 to evaluate
the cluster quality: homogeneity (H ), completeness (C), and V-measure (V ). Homogeneity is
the highest when each cluster only has phones of the same type, completeness is maximized
when all phones of the same type are put in the same cluster. V-measure is a harmonic mean
of the two (Rosenberg & Hirschberg, 2007).

High clustering performance would mean that the phonetic categories are easily separable
in a model’s representation space. Our results (see Fig. 4) for the two target models of per-
ceptual space learning are lower compared to the supervised model (which we consider to
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Fig. 4. Quality of the unsupervised clusters, found by clustering the representations in the two most successful
models (DPGMM and CAE-RNN) and the supervised baseline in English, Japanese, and Mandarin. Plots display
homogeneity (left), completeness (middle), and V -measure (right) averaged over the 10 data splits; error bars show
the standard error of the mean.

be an approximate upper-bound baseline). In other words, the clustering performance is far
from perfect in all cases and is not as good as the performance of the supervised model, sug-
gesting that adult-like phonetic categories may not be the most natural clusters in the models’
learned phonetic spaces. On average, the clustering performance for the DPGMM-based rep-
resentations is somewhat higher than for the CAE-RNN-based representations (except for the
Japanese and the Mandarin models tested on GlobalPhone). A mixed-effects linear regression
model fitted to the data showed that the described differences are statistically significant on
all three measures: that is, on average, the supervised model has the highest cluster quality,
followed by the DPGMM, followed by the CAE-RNN (except that the difference between the
DPGMM and the CAE-RNN using C measure was not significant).

Cluster-to-phone mappings. For illustration purposes, we also show a confusion matrix
between the true phonetic category labels and the unsupervised clusters, computed on
the full dataset with 100 acoustic realizations per phone. Note that there is no immediate
correspondence between a set of true phonetic category labels and a set of unsupervised
clusters, and we need to find the best assignment between true labels and unlabeled clusters.
One classic method commonly used for this purpose is the Hungarian algorithm, a global
combinatorial optimization method which solves the assignment problem in polynomial
time (Kuhn, 1955). We present the resulting confusion matrix for English (trained on WSJ,
tested on Buckeye). Fig. 5 shows fragments of the matrices, while full matrices can be
found in Supporting Information S4. Comparing the diagonal values in Fig. 5a versus 5b,
we can see that the alignment between the true and the predicted phone labels is better for
the DPGMM-based representations, where confusions are observed between similar sounds
(e.g., vowels or fricative consonants). By contrast, the CAE-RNN-based representations have
at least two clusters (with indices 36 and 2) whose boundaries cross many phones with very
different acoustic characteristics (e.g., vowels [2] and [U] but also consonants [p] and [D]).
This difference is also noticeable in Fig. 6, which shows that the label assignment to clusters
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Fig. 5. Fragments of confusion matrices between the true phone labels versus best matching clusters on English
Buckeye data. The clusters are obtained using unsupervised agglomerative clustering on each model’s represen-
tations of 100 instances for each English phone, and the matching is done by solving the assignment problems
between true categories and predicted clusters using the Hungarian algorithm. (See Supporting Information S4 for
full matrices.)

Fig. 6. Accuracy of the mapping between true phone labels and the best matching clusters in English, Japanese,
and Mandarin, computed using the Hungarian algorithm.

is more accurate for the DPGMM than the CAE-RNN representations. This is consistent with
the results in terms of the H , C, and V measures above.

Summary. Overall, our analyses show that the clusters computed on top of the CAE-RNN
representations have lower quality than the clusters computed on the DPGMM posterior-
grams: they are less homogeneous, less complete, and align worse with true phonetic cate-
gories. Recall, however, that we used different distance measures for the two models, follow-
ing our main simulations using ABX discrimination task—KL divergence for the DPGMM
versus angular distance for the CAE-RNN—and the latter may be less suitable for clustering.
To see whether this is the case, we applied the same clustering algorithm to the CAE-RNN
representations using the Euclidean distance measure. The clusters that include very differ-
ent phones (such as [2] and [D] in Fig. 5b) no longer occurred, but the overall cluster quality
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Fig. 7. Accuracy of the k-NN phone classifier trained and tested on the representations of phone instances in the
DPGMM and the CAE-RNN model for English, Japanese, and Mandarin. Bands show the standard error of the
mean for 10 random training–test data splits.

was not substantially higher.10 The CAE-RNN confusion matrix computed with Euclidean
distances is provided in Supporting Information S5 for reference.

7.2. Classification

The goal of our unsupervised clustering analysis was to test whether each model’s represen-
tations of phone instances naturally group into classes corresponding to adult-like phonetic
categories. Here, we test if—and to what extent—such phonetic categories can be inferred
from each model’s representations by an algorithm explicitly trained on this task. For this, we
train a linear k-nearest neighbors classifier (we use k = 10) using the precomputed distances
between phone representations in each model described above. For each distance matrix, we
use an 80–20% split (for each phone) for training and testing, respectively. We always use the
full test data (i.e., 20%) for evaluating the classifier, but variable amounts of data for training,
between 10% and 100% of the all training data instances, in increments of 10%, and look at
how much data is needed for achieving high classification accuracy. The less data is needed;
the more readily available the phone categories are in the model’s representations.

Fig. 7 shows that the classifier trained on the representations of the supervised model,
unsurprisingly, achieves the highest accuracy on all corpora (the solid orange lines), between
54.6% and 77.0%. Moreover, the lines are not steep: the classifier trained on the supervised
models’ data achieves near-ceiling accuracy already after seeing only 20% of the data. This
is not the pattern we see for the classifier trained on the representations of the two percep-
tual space learning models: classification accuracy keeps increasing with more training data,
suggesting that the information about phonetic categories is not readily available in the rep-
resentations of the DPGMM and CAE-RNN.

Next, DPGMM representations (dotted pink lines) nearly always result in higher classifica-
tion accuracy than the CAE-RNN representations (dashed blue lines). The only exception is
the Japanese GlobalPhone corpus, where the two models yield nearly identical classification
accuracy (the dotted pink and the dashed blue line closely follow each other). This pattern
of results suggests that the information about the phones is more readily available in the
DPGMM than CAE-RNN representations. To summarize, our clustering and classification

 15516709, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13314, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Y. Matusevych et al. / Cognitive Science 47 (2023) 27 of 39

results are consistent in providing evidence that the DPGMM encodes more information
about phonetic categories than the CAE-RNN.

8. Discussion

8.1. Phone discrimination in computational models

Using computational modeling on realistic input, we compared possible models of early
phonetic learning in their ability to predict the changes in discrimination empirically observed
in infants. In the first study, we tested Schatz et al.’s (2021) DPGMM model on three phone
contrasts from different languages, using a phone discrimination task. We first reproduced
their result for the crosslinguistic discrimination of the English [ɹ]–[l] contrast and then found
that their model also shows the infant-like pattern of discrimination for the Mandarin [C]–[ʨh]
contrast. This means that their earlier result was not specific to a particular English contrast.
In the second study, we tested four neural network models. One of these models, the CAE-
RNN, also made correct predictions on the same two contrasts as the DPGMM. Although no
model predicted the correct pattern for the Catalan vowel contrast [e]–[E], the fact that two of
them make correct predictions on the other two contrasts is promising. This result supports
the idea that models learning perceptual spaces directly from unsegmented natural speech can
correctly predict some of the infant phone discrimination data (Feldman et al., 2021; Schatz
et al., 2021). Based on the results of this study, the DPGMM and the CAE-RNN show some
promise as models of early phonetic learning. Their lack of correct predictions on the Catalan
contrast may have to do with the amount of noise in the training and/or test data because a
supervised phoneme-recognizer trained and tested on the same data also showed high dis-
crimination error. This suggests that our results on Catalan might be seen as an absence of
evidence in favor or against any of the models. However, the noise in the data cannot explain
why the supervised model could correctly predict the differences in the discrimination of
the Catalan contrast for the Catalan- versus Spanish-learning infants, and ideally our mod-
els should be evaluated on different suitable corpora, once they become available. Although
we have been able to show that only two out of the five tested models are likely candidates
for modeling infant speech perception, the existing infants’ phone discrimination data may
simply not be sufficient for distinguishing between the two more successful models.

8.2. Mechanisms of early phonetic learning

The second focus of our studies was the distinction between bottom-up versus top-down
learning mechanisms. In particular, the DPGMM, the AE, and the AE-RNN are purely unsu-
pervised models that learn from frame-level data. In contrast, the CAE and the CAE-RNN
use weak top-down guidance from the word level (although the word forms could also be
detected in an unsupervised way; see Kamper, 2019). The DPGMM and the CAE-RNN were
equally successful in predicting the infants’ crosslinguistic phone discrimination patterns. At
the same time, these two models represent very different algorithms. If we compare models
that use the same architectures—AE versus CAE and AE-RNN versus CAE-RNN—we
can conclude that, everything else being equal, the top-down guidance can help in making
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predictions that are more similar to infants’ data on phone discrimination across languages. At
the same time, recall that the pairs of acoustic word instances for the CAE and the CAE-RNN
models in our case were obtained using supervised alignment methods. Training these models
on a noisier set of word pairs obtained using fully unsupervised word discovery methods, as
in Kamper (2019), could potentially diminish the benefits of the top-down guidance.

An orthogonal distinction we have made relates to the representation unit the models are
trained on: frames versus word-sized units. Recall that at test time this corresponds, respec-
tively, to representing phones either as sequences of frames or as holistic units. Again, if
we compare the models with similar architectures that differ primarily in their represen-
tation type (AE vs. AE-RNN and CAE vs. CAE-RNN), we can conclude that processing
longer units holistically in the recurrent models results in better predictions. Therefore, such
holistic processing of sequences is advantageous for our autoencoder-based models of infant
speech perception. There may be at least two mechanisms providing this advantage. First,
at test time, the recurrent models integrate the information from the whole series of frames
(corresponding to a phone) into a holistic representation and comparing such integral rep-
resentations to each other in an ABX task may be a better model of infants’ discrimination
behavior than the alternative, that is, comparing sequences of individual 25-ms-long frames to
each other. Second, representation spaces in the recurrent models are built based on sequences
longer than a frame or even a phone, and this is compatible with some early theories of pho-
netic learning (Jusczyk, 1992, 1993), which argue that infants store representations for speech
sequences that are longer than a phone.

Because we have only tested four neural network models and did not explore whether
their behavior changes depending on the exact architecture and hyperparameters, our results
regarding the two distinctions above only present inconclusive evidence and may not be gen-
eralizable. Relatedly, while we cannot provide a fair comparison of the neural networks to
the DPGMM model, we can speculate that a version of the DPGMM model that could better
integrate the information over time could be a better model of early phonetic learning.

8.3. Models’ predictions for future testing with infants

To test whether the DPGMM and the CAE-RNN make similar predictions on all phone
contrasts, we used the general method proposed by Schatz et al. (2021) to derive English con-
trasts for which each of the two models predicts robust differences in discrimination by the
Japanese versus English learner. Such contrasts can inform future experimental studies with
infants: it is costly to run experiments with infants, and our models’ predictions can inform
future testing with Japanese- and English-learning infants. While there are some contrasts,
such as [l]–[ɹ] and [m]–[ɹ], for which both our models—the DPGMM and the CAE-RNN—
predict robust crosslinguistic differences in discrimination rates, our analysis shows that the
models do not always make identical predictions about discriminability, and some contrasts
are predicted to yield such differences only by one of the models. Because of this disagree-
ment between the models, the outcomes of future studies with infants can help one decide
whether the DPGMM or the CAE-RNN is a better model of early phonetic learning. In this
respect, specific recommendations include testing Japanese- and English-learning infants on
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two groups of contrasts: (1) contrasts that include the rhotacized vowel [Ç] (predicted to
yield a crosslinguistic difference by the DPGMM model) and (2) vowel contrasts that include
[2] and some fricative consonant contrasts with [f] (predicted by the CAE-RNN model). If
Japanese-learning infants find it more difficult (compared to English-learning infants) to dis-
criminate contrasts from group (1) but not (2), this would speak in favor of the DPGMM
model; an inverse pattern would lend support to the CAE-RNN model. If Japanese-learning
infants find both groups of contrasts challenging, this would speak in favor of both our mod-
els, while a lack of difference between Japanese- and English-learning infants on either group
of contrasts would suggest that either our models are not sufficiently detailed models of early
phonetic learning or that the mechanism of deriving robust predictions should be improved.
To summarize, consistent discrimination results in infant experiments would speak in favor of
one or the other model, or against both, thus making it possible to falsify one or both models
on the ground of their ability to generate the effects of interest rather than correctly predict
those already observed (Palminteri, Wyart, & Koechlin, 2017).

8.4. Phonetic category information in models’ representations

To investigate to what extent the information about adult-like phonetic categories is readily
available in the representations of our two “best” (in terms of predicting infants’ patterns)
models, and whether the two models are similar in the amount of such information they
encode, we carried out an unsupervised clustering and a supervised classification analyses on
the phone representations in the DPGMM and the CAE-RNN models. The results across the
two types of analyses were consistent in that the DPGMM representations are organized in
such a way that the information necessary to discriminate between adult-like phonetic cate-
gories can be derived more easily, compared to the CAE-RNN representations. In their study,
Schatz et al. (2021) analyzed the representations of the DPGMM model and showed that those
were not similar to adult-like phonetic categories in any meaningful sense. Our result shows
that the representations of the CAE-RNN are even less similar to phonetic categories, com-
pared to the DPGMM representations. At the same time, note that a model encoding more
information about adult-like phonetic categories is not necessarily a better model of infant
phonetic learning and vice versa.

Irrespective of the exact differences between the DPGMM and the CAE-RNN, it is not a
trivial finding that the models encode non-negligible amount of information about phonetic
categories in their representations. This finding is interesting for the existing accounts of
perceptual space learning because these accounts argue that categories are learned later in life
by carving up the acquired perceptual space (Feldman et al., 2021). The models of perceptual
space learning only simulate the early part of this complex learning process, before infants
acquire adult-like phonetic categories. Indeed, our classification analyses show that the
information about categories may not be readily available in the models’ representation
spaces. At the same time, our clustering analyses show that even after training computational
models of perceptual space learning on small amounts of data (compared to what an infant
hears by her first birthday), their perceptual spaces can already be carved up into clusters that
vaguely resemble phonetic categories, potentially mimicking infants’ very first steps towards
adult-like categories. Finally, note that our clustering and classification results should be
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interpreted with caution, as they only present indirect evidence for or against the emergence
of actual phonetic categories in the models’ representations. Even if phonetic categories
could be separated nearly perfectly in a model’s representations, it does not mean that the
model uses top-down categorical information during the learning or at test time (see Feldman
et al., 2021, for a relevant discussion).

8.5. Future directions

In this work, we have only tested our models of phonetic learning on a particular kind
of infants’ phone discrimination data, where two groups of infants—native and non-native
learners of a certain language—are tested on a given phone contrast from that language. In
other kinds of experiments, infants from a single group were tested only on a native or a
non-native phonetic contrast (e.g., see an overview for vowel contrasts in Tsuji & Cristia,
2014), and in the future the field can benefit from carrying out a meta-analytic evaluation of
how well our and similar models predict this kind of data, as in the framework proposed by
Cruz Blandón et al. (2021).

Moreover, our work has only focused on particular implementations of five computational
models. The field of speech engineering has recently seen a large increase in the number of
available models for unsupervised and weakly supervised learning (see reviews by Aldarmaki,
Ullah, Ram & Zaki, 2022; Mohamed et al., 2022). Some of these models have been evaluated
against adults’ categorical phone representations (e.g., Cruz Blandón & Räsänen, 2020) or
against behavioral data (e.g., Millet & Dunbar, 2022), and future work could evaluate them
on infants’ phone discrimination data of the kind used in our work.

Another research direction worth exploring is using more ecological data for training the
models. While our study is a step forward compared to work in which models are trained
on idealized laboratory stimuli, there is still a gap between the type of data we used and
naturalistic input that infants are exposed to. In particular, the performance of a computa-
tional model in the machine ABX discrimination task varies depending on the type of input
to the model (read speech vs. child-centered recordings; see Lavechin et al., 2023) and the
exact composition of the input (in terms of the number of speakers and their gender; see Li,
Schatz, Matusevych, Goldwater, & Feldman, 2020). We have used a combination of read and
spontaneous adult speech corpora thanks to their availability, and Schatz et al. (2021) showed
that qualitative patterns were consistent for both speech registers on their dataset. At the same
time, once datasets of child-directed recordings for the target languages become available, our
models can be trained and tested on such data for their more ecologically valid evaluation.
Moreover, training the models on more naturalistic data would also be the first step towards
measuring the fit between models’ error rate and infants’ behavior, rather than evaluating it
qualitatively, as in this work.

9. Conclusion

It has recently been proposed that infants’ phone discrimination data can be explained in
terms of perceptual space learning, without use of phonetic categories (Feldman et al., 2021;
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Schatz et al., 2021). Here, we have evaluated five computational models of early phonetic
learning from naturalistic speech data on three phonetic contrasts, for which infants’ phone
discrimination data are available. We have found that the generative probabilistic model of
Schatz et al. (2021), DPGMM, and a neural network with weak top-down supervision from
the word level, CAE-RNN, can correctly predict qualitative patterns of phone discrimination
exhibited by infants on two out of three phonetic contrasts. While Schatz et al. (2021) found
that their model’s representations did not resemble phonetic categories, we have observed that
the representations of the other model, CAE-RNN, resemble phonetic categories to an even
lesser extent. Thus, our findings extend the previous proof-in-principle that perceptual space
learning is a viable account of early phonetic learning and contribute to the growing body
of work which argues against the unconditional assumption of phonetic category learning in
infancy (Feldman et al., 2021; McMurray, 2023). Finally, three other models that we tested
appeared to be less successful at predicting infants’ discrimination data. This result suggests
that the existing data from infants can help us distinguish between some (but not all) for-
mal algorithms of phonetic learning and calls for collection of more fine-grained data. Such
data would help us test whether the purely bottom-up distributional learning account, as in
the DPGMM, or the account with weak top-down guidance from the word level, as in the
CAE-RNN, makes a better theory of early phonetic learning. The fact that the two models
make different predictions on other phonetic contrasts suggests that more data would help in
resolving this issue, and we have provided concrete suggestions about which contrasts may
be promising for future data collection with infants.
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Notes

1 In principle, there are other suitable contrasts to test based on infant data, for example,
Thompson [k’]–[q’], Hindi [t]–[ú] (Werker & Tees, 1984), and Zulu [ɬ]–[ɮ], [kh]–[k’],
and [p]–[á] (Best & McRoberts, 2003), but suitable corpora for these languages were
either unavailable or difficult to obtain.

2 https://github.com/bootphon/ABXpy
3 The Catalan test stimuli in Bosch and Sebastián-Gallés (2003) were recorded with

human speakers, but we could not obtain the original recordings from the authors.
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4 Note that this approach assumes independent data samples, which is not the case for our
subsets of the Catalan corpus (as explained below in Section 3.4). This could potentially
lead to underestimating variance and overestimating statistical significance.

5 For English and Japanese in dataset 1, we obtained the existing alignments (Schatz
et al., 2021) generated with Kaldi (Povey et al., 2011). For the Catalan data, the tran-
scription quality in the original corpus turned out to be low (confirmed in consulta-
tion with a native Catalan speaker), and we replaced word transcriptions with stan-
dard transcriptions for words available in Wiktionary (approximately 11.6% of the word
types): http://wiktionary.org. This, however, did not change the models’ qualitative pat-
terns compared to our preliminary simulations with the data aligned using the original
transcriptions.

6 https://github.com/Thomas-Schatz/perceptual-tuning-pnas
7 This is because the discrimination error rates are expressed in percentages, and the true

size of the target effect is not necessarily a linear function of the difference between
percentages: that is, the 5% difference in 50–45% versus 6–1% likely corresponds to
different effect sizes.

8 https://github.com/kamperh/speech_correspondence
9 https://github.com/kamperh/recipe_bucktsong_awe_py3

10 To ensure that our main ABX results in Study 2 were not affected by the choice of the
distance measure for the CAE-RNN model, we ran the discrimination experiments with
this model using the Euclidean distance measure (KL divergence could not be used,
because it requires each representation to be a valid probability distribution), and the
main patterns of results for out target phone contrasts in all languages did not change
(see Supporting Information S5).
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Figure S6: A confusion matrix between the true phone
labels vs. DPGMM-based best matching clusters on
English Buckeye data (KL divergence).

Figure S7: A confusion matrix between the true phone
labels vs. CAE-RNN-based best matching clusters on
English Buckeye data (angular distance).

Figure S8: A confusion matrix between the true phone
labels vs. CAE-RNN-based best matching clusters on
English Buckeye data (Euclidean distance).

 15516709, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13314, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



38 of 39 Y. Matusevych et al. / Cognitive Science 47 (2023)

Appendix A: Formal models
Here we provide formal definitions and the hyperparameters values of the DPGMM (Study 1),
the four neural network models (Study 2), as well as the supervised baseline.

A.1. Dirichlet process Gaussian mixture model
The DPGMM is a generative probabilistic model, a GMM with a non-parametric Dirichlet

process prior. It learns by maximizing the likelihood of its K components (K changes during
learning) given the input speech frame X :

L(�|X ) =
|K |∑

i=1

πi p(X |μi, �i), (A.1)

where � is a set of the model’s parameters and μi and �i are the parameters of component
i: mean and covariance, respectively. The mixture weights πi are generated through the stick-
breaking process (a particular version of the Dirichlet process), while μi and �i of component
i are sampled from the normal-inverse Wishart distribution. The inference is done using a
parallel Markov chain Monte Carlo sampler (Chang & Fisher III, 2013). More details can be
found in Chen et al. (2015); Schatz et al. (2021).

A.2. Neural network models
Autoencoder (AE) is a classic autoassociative model, which uses reconstruction loss (here:

mean squared error) between the feature representation X of an input acoustic frame and its
output representation X̄ :

�(X ) = ||X − X̄ ||2. (A.2)

We follow Kamper et al. (2015) and use a stacked version with eight hidden layers (7 × 100
and 1 × 39 units). The model is pretrained for five epochs per layer plus five epochs of final
fine-tuning, without early stopping, with Adadelta optimization with adaptive learning rate
(Zeiler, 2012) and decay 0.95. At test time, the second-to-last hidden layer is used to encode
individual frames from the test data into the model’s representation space.

Correspondence autoencoder (CAE) only differs from the AE in that it is trained on pairs
of acoustic frames: a feature representation X of the acoustic frame from one instance of a
given word type and a feature representation X ′ of the aligned (using dynamic time warping)
frame from another instance of the same word type. The loss is then computed between X ′

and the reconstructed version X̄ of the representation X :

�(X, X ′) = ||X ′ − X̄ ||2. (A.3)

Following Kamper et al. (2015), we initialize the CAE using the AE (with parameters as
described above) and then train the CAE with the same architecture for 120 epochs.

Autoencoding recurrent neural network (AE-RNN) includes an encoder RNN and a
decoder RNN. The encoder reads an input sequence and updates its hidden state. The final
state of the encoder is then transformed into an acoustic embedding and passed to the decoder,
which uses it to generate an output sequence. Each input sequence consists of a sequence of
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MFCC feature vectors, X = (�x1, · · · , �xT ), where T is the sequence length. The loss for a
single training item is

�(X ) =
T∑

t=1

||�xt − �ft (X )||2, (A.4)

where X is the input sequence and ft (X ) is the tth decoder output conditioned on the embed-
ding z, which is obtained by transforming the encoder’s final state (i.e., reducing the number
of dimensions). At test time, a phone sequence is encoded into the model’s fixed-dimensional
acoustic embedding space. We use the parameters of Kamper (2019): three hidden layers (400
gated recurrent units each) in both the decoder and the encoder, embedding dimensionality
of 130, 15 epochs training without early stopping using Adam optimization (Kingma & Ba,
2015) with a learning rate of 0.001.

Correspondence-autoencoding recurrent neural network (CAE-RNN) uses an identical
architecture, but each input consists of word pairs X and X ′, which are different acoustic
realizations of the same word type. The loss for a single training pair in this case is

�(X, X ′) =
T ′∑

t=1

||�x′
t − �ft (X )||2, (A.5)

where X is the input and X ′ the target output sequence and ft (X ) is the tth decoder output
conditioned on the embedding z. Following Kamper (2019), we use the AE-RNN to initialize
the parameters of the CAE-RNN and then train it (with parameters analogous to those of the
AE-RNN) for three epochs.

A.3. Supervised baseline
Our supervised baseline is a phoneme recognizer, with the same architecture and settings

described in Schatz et al. (2021). We use a standard training recipe commonly used in speech
recognition. It is adapted from the Wall Street Journal corpus recipe available in Kaldi. Specif-
ically, each phoneme recognizer is a combination of an acoustic hidden Markov model Gaus-
sian mixture model (HMM-GMM) and a phoneme-level bigram language model trained using
the Kaldi toolkit (Povey et al., 2011). The acoustic model is a probabilistic generative model,
where each phoneme is represented as a set of variants conditioned on their position within a
word as well as the neighboring phonetic context (i.e., preceding and following phonemes).
Furthermore, each variant is modeled as a standard tri-state left-to-right HMM. Each acoustic
model is trained using speaker-adaptive training through feature maximum likelihood linear
regression. The test data are then processed using the acoustic model and the language model
together, with the acoustic scale parameter for decoding set to 0.1 (i.e., the probabilities from
the language model are weighted higher than the probabilities from the acoustic model).
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