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Abstract

Listeners typically rely more on one aspect of the speech
signal than another when categorizing speech sounds.
This is known as feature weighting. We present a rate
distortion theory model of feature weighting and use it to
ask whether human listeners select feature weights sim-
ply by mirroring the feature reliabilities that are present
in their input. We show that there is an additional com-
ponent (selective attention) listeners appear to use that
is not reflected by the input statistics. This suggests that
an internal mechanism is at play in governing listeners’
weighting of different aspects of the speech signal, in
addition to tracking statistics.
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People rely on aspects of the speech signal (features) in dif-
ferent proportions when mapping speech signal to categories.
For example, when distinguishing [E] (as in bet) from [æ] (as in
bat), English listeners use the first formant (F1) as a primary
feature and duration as a secondary feature (Wu & Holt, 2022;
Liu & Holt, 2015). This has previously been hypothesized
to directly reflect listeners’ long-term experience with feature
statistics in the input – i.e., how reliably a feature separates one
sound category from the other (Toscano & McMurray, 2010).
More recently, however, Holt, Tierney, Guerra, Laffere, and Dick
(2018) proposed an alternative hypothesis known as selective
attention, in which listeners choose to focus on one feature
rather than another in their perception. Their proposal was
motivated by listeners’ reweighting of features in laboratory
tasks (Wu & Holt, 2022; Liu & Holt, 2015; Lehet & Holt, 2020;
Clarke & Garrett, 2004; Guediche, Fiez, & Holt, 2016; Idemaru
& Holt, 2020, 2014).

In this paper we present a new argument in favor of selective
attention, based on the fact that listeners’ feature weighting
does not match the long-term input statistics they hear. We
collect corpus statistics from three corpora of English and then
train a number of models that are optimal perceivers, defined
in information theoretic terms through rate distortion theory
(RDT). We create models that directly reflect the input statistics
and compare them to models that incorporate selective atten-
tion. We show that the latter is qualitatively more similar to
behavioral data on feature weighting from Wu and Holt (2022).

Methods

We model how listeners categorize standard American English
[æ] and [E], focusing on features akin to those manipulated by

Wu and Holt (2022) – the first formant (F1)1 and vowel duration
(Liu & Holt, 2015). Smaller values of both typically correspond
to [E] and higher values correspond to [æ]. F1 is thought of as
a primary feature, whereas duration is secondary (Wu & Holt,
2022; Liu & Holt, 2015).

Our simulations are conducted with a β-VAE architecture
adopted from Bates and Jacobs (2021) used in cued visual
attentional allocation research. We trained 2 versions of the
model: one baseline model based only on input statistics and
one incorporating selective attention. The selective attention
model has an additional parameter ω⃗ forcing the model to focus
more on F1 (see below). For each of these two versions of the
model, 10 models were trained on each of the three speech
corpora of standard American English: TIMIT (Garofolo, Lamel,
Fisher, Fiscus, & Pallett, 1993), Buckeye (BUC; Pitt, Johnson,
Hume, Kiesling, & Raymond, 2005) and Wall Street Journal
(WSJ; Paul & Baker, 1992). We compared these to listeners’
feature weights from Wu and Holt (2022).

Our models are an implementation of RDT, which is an in-
formation theoretic model of a system trying to maximize its
performance with capacity constrained information processing
(Barlow et al., 1961; Sims, 2016, 2018). It is built out of an
encoder that projects the information to the latent represen-
tation which is then both expanded back in the decoder, and
also used to categorize the sound. Its objective is a tradeoff
between minimizing perceptual errors for reconstruction and
categorization, and developing parsimonious latent representa-
tions. We use this model of perception to numerically estimate
optimal feature weights.

β-VAE is a neural implementation of RDT (Alemi et al., 2018).
It is a probabilistic deep neural network model trained to opti-
mize a loss containing the rate (forcing the encoder to learn
meaningful latent representations) and the reconstruction of
an input (forcing the model to reconstruct the input as best
possible). In addition to the base VAE architecture we add
a supervised category model mapping the latent information
to one of the categories, similar to Bates, Lerch, Sims, and
Jacobs (2019). Following Bates and Jacobs (2021), to create
models with selective attention, we add a term ω⃗ that forces
the model to consistently reconstruct one of the features more
accurately than another. The loss is:

L(θ,φ; x⃗i ,⃗yi) =−βDKL(qφ j(z⃗i j |x⃗i j)||pθ(z⃗i j))

+MSE(x⃗i j , y⃗i j)ω⃗i j +BCE(cat(
n

∑
j=1

γ j z⃗i j), li) (1)

where x⃗ is input; y⃗ is output; z⃗ is latent information extracted

1The first formant is chosen instead of all 5 as in Wu and Holt
(2022), since it is most different in the two vowels.
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Figure 1: Corpus data. [æ] is green and [E] is red. Assumed
data is schematic given assumptions by prior research such
as Toscano and McMurray (2010).

by the encoder; DKL is KL divergence; MSE is mean squared
error; BCE is binary cross entropy; q(), p() are probability dis-
tributions with θ,φ parameters where q() is an approximation of
p(); β is a parameter scaling the KL divergence proportionally
to the MSE loss; cat() is the categorization model; and ω⃗i j is
the feature weighting. Parameters followed Bates and Jacobs
(2021), except for ω⃗, which was set at 0.1 for the downweighted
feature (duration) and 0.9 for the upweighted feature (F1).

Simulations
We trained 10 models on each corpus separately and averaged
results across the 10 replications.2 The input to all simulations
were [æ] and [E] vowels encoded as 2-dimensional data (F1
and duration). These values were automatically extracted from
each corpus using Praat and then normalized by z-scoring
by speaker. Because of errors stemming from the automated
feature extraction or from the automated alignments in the
WSJ and BUC annotations, we excluded any vowel with an
F1 greater than 1200Hz or a duration less than 30ms. Corpus
data can be seen in Figure 1.

To obtain perceptual feature weights, following Wu and Holt
(2022), we used linear regression3 with features as predictors
and category as the dependent variable. We tested models’
categorization along the entire span of possible combinations
of duration and F1 for a specific corpus, with a step of 0.1.
To obtain comparable human feature weights, we used hu-
man data and experimental stimuli from Wu and Holt (2022).
For each corpus, we first z-scored the experimental stimuli
using the average mean and average variance of all female
speakers of the corpus. We then used the step sizes in these z-

2Code is available at: https://github.com/n-ika/adapt2noise
3Logistic regression yielded qualitatively similar results.

Figure 2: Feature weights in humans, models without selec-
tive attention, and models with selective attention.

scored duration and F1 values to recompute the human feature
weights based on raw data from Wu and Holt (2022).4

Results are shown in Figure 2. Our baseline models that
learn feature weights solely based on corpus statistics rely
more on F1 than on duration, similar to humans. However,
whereas the WSJ model matches human feature weighting rel-
atively closely, TIMIT and BUC corpora show a more equal fea-
ture weighting that humans do. This difference cannot solely be
due to the fact that WSJ contains well-articulated read speech,
because TIMIT does as well (in contrast to BUC, which con-
tains conversational speech). Our selective attention models
(⃗ω = [0.1,0.9]) yield human-like feature weighting for all three
corpora, as seen in Figure 2.

Discussion
This paper compared feature weighting in human speech per-
ception to the input statistics that listeners hear. Our baseline
models, whose feature weights were based solely on input
statistics, trended toward relying more on F1 than duration,
like humans do. Thus, which feature is primary does not ap-
pear to be random. However, our selective attention model
showed qualitatively more human-like feature weighting than
the baseline model did. This suggests that asymmetries in hu-
man feature weighting may not be solely determined by input

4The lab stimuli were words produced in isolation, whereas the
corpus data were extracted from continuous speech. This resulted
in large acoustic differences between the two settings: the stimuli
did not fall into the same acoustic range as the corpus, particularly
along the duration dimension. Thus, the models trained on corpus
data could not be used to directly predict human behavior on the lab
stimuli. This mismatch also prevented us from conducting statistical
tests to quantitatively compare the models’ fit to human data.
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statistics, as suggested by Toscano and McMurray (2010), but
instead may be amplified through selective attention.

The parameter ω⃗ has been used to model attention in previ-
ous work on visual perception and has a natural interpretation
within the theory of selective attention for speech perception
(Holt et al., 2018), which hypothesizes that listeners selectively
adjust how much different features contribute to perception. An
interesting question for future research is why listeners control
their attention to speech features in a way that deviates from
the long-term statistics in their input.

Selective attention has also been hypothesized to generate
neuronal shifts observed in humans and animals with STRF
recordings in auditory cortex (Fritz, Shamma, Elhilali, & Klein,
2003; Holdgraf et al., 2016; Holt et al., 2018), and in the future,
our models can potentially be extended to account for neural
data using an architecture that implements selective attention.
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