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Abstract

Rhythm plays an important role in language perception
and learning, with infants perceiving rhythmic differences
across languages at birth. While the mechanisms under-
lying rhythm perception in speech remain unclear, one in-
teresting possibility is that these mechanisms are similar
to those involved in the perception of musical rhythm. In
this work, we adopt a model originally designed for mu-
sical rhythm to simulate speech rhythm perception. We
show that this model replicates the behavioral results of
language discrimination in newborns, and outperforms
an existing model of infant language discrimination. We
also find that percussives — fast-changing components
in the acoustics — are necessary for distinguishing lan-
guages of different rhythms, which suggests that percus-
sives are essential for rhythm perception. Our music-
inspired model of speech rhythm may be seen as a first
step towards a unified theory of how rhythm is repre-
sented in speech and music.

Keywords: rhythm; music; speech; language perception; lan-
guage and music; computational modeling

Rhythm is important in both speech and music. In speech,
rhythm is one of the first things infants perceive and learn
about their native language (Nazzi, Bertoncini, & Mehler,
1998; Nazzi & Ramus, 2003). For example, newborns dis-
criminate between English and Japanese, which are rhyth-
mically different (Nazzi et al., 1998), but do not discriminate
between English and German, which are rhythmically simi-
lar, until they are 7 months old (Chong, Vicenik, & Sundara,
2018). In music, rhythm is a primary structural element, and
the rhythmic pattern of a tune can be strongly characteristic of
a genre, style, or musical culture (London, 2001). Cognitively,
musical rhythm correlates with the rhythm of composers’ na-
tive language (Patel & Daniele, 2003). Neurally, there exist
shared pathways for rhythm perception in music and language
(see Kotz, Ravignani, & Fitch, 2018 for a review). Moreover,
musical training in rhythm improves speech rhythm encoding
(Harding, Sammler, Henry, Large, & Kotz, 2019) and language
perception in general (Slater, Azem, Nicol, Swedenborg, &

Kraus, 2017; Slater et al., 2018). These connections imply
the possibility of a cognitive representation of rhythm that is
shared in both domains.

In this work, we examine the connection between speech
and musical rhythm by applying a model of musical rhythm
(Tsunoo, Ono, & Sagayama, 2009) to simulate speech rhythm
perception. In addition, we are interested in asking whether
features that are important in music rhythm detection also fa-
cilitate rhythmic discrimination in language. In music, rhythmic
patterns are often marked by short, transient acoustics such
as drums, and isolating the percussive components from the
music stream using Harmonic-Percussive Source Separation
can lead to a better rhythm representation for downstream
tasks (Ono et al., 2010; Fitzgerald, 2010). Here, we sepa-
rately model the harmonic (slow-changing features such as
vowels, pitch and intonation contour) and percussive compo-
nents (fast-changing features such as syllable onsets and con-
sonants) of speech to test whether percussives in speech can
represent rhythm, as they do in music.

We use the model to simulate two language discrimina-
tion experiments, one between English and Japanese and the
other between English and German. We also compare our re-
sults to a computational model that has previously been used
to replicate a number of language discrimination experiments
in newborns (Carbajal, Fér, & Dupoux, 2016; Carbajal, 2018).
We find that our model replicates newborns’ language discrim-
ination behavior, unlike the baseline model. Importantly, how-
ever, the model is successful only when using a representa-
tion with percussives.

Methods

We test models on two pairs of languages and compare the
models’ discrimination with that of newborns. In the behavioral
study of newborn language discrimination (Nazzi et al., 1998),
French 3-day-old infants are exposed to spoken sentences by
multiple speakers in one language until they are habituated;
then, the stimuli change to a new speaker either in the same
language or a new language. A difference in infants’ response
between the two conditions is taken as evidence that they can
distinguish the two languages. As in Carbajal et al. (2016),



we simulate the behavioral paradigm by training each model
on 4 French speakers, with 15 minutes per speaker, which
serves as the brief exposure the infants have to their native
language before they are tested in the lab. After training, the
model is presented with utterances of different languages, and
a machine ABX score is computed on these utterances to sim-
ulate discrimination between languages. The training and test
data are selected from the Wall Street Journal corpus (Paul &
Baker, 1992) and the Globalphone corpus (Schultz, 2002).

The rhythm model that we adopt from Tsunoo et al. (2009)
is designed in the following way. The model is parameterized
by a set number (6) of templates, each of which represents
a recurring rhythmic pattern from speech. Each template is
composed of 40 frames (920 ms), where each frame is an in-
dependent multivariate Gaussian distribution. Instances of the
template in the speech stream are assumed to be drawn from
the corresponding multivariate Gaussians. Using a dynamic
programming algorithm (Ney, 1984), a speech stream of arbi-
trary length can be optimally aligned to the templates. Each
template can be matched to a stretch of speech between 0.5
and 2 times its length, which allows the model to match rhyth-
mic patterns of flexible length. We extract spectral features
from the speech data using Short-Time Fourier Transform on
every 46 ms (one frame) of speech, with a 23 ms moving win-
dow. Following Tsunoo et al. (2009), the spectral features in
the 0-8 kHz range are averaged into eight 1 kHz-wide bins,
leading to 8 dimensions per frame.

Using Harmonic-Percussive Source Separation, we sepa-
rate the temporally continuous components of speech (har-
monics) from the spectrally continuous component (percus-
sives). We train and test models using one of the three repre-
sentations: harmonics, percussives, or natural (both harmon-
ics and percussives).

Training is done through Expectation Maximization and re-
sults in an optimized set of parameters for the templates. At
test, each utterance is aligned to the models’ templates using
the dynamic programming algorithm, and the average log like-
lihood of the test utterance under the model is calculated. The
discriminability of the log-likelihoods for utterances from differ-
ent test languages is assessed by computing machine ABX
discrimination scores (Schatz et al., 2013; Schatz, 2016).

As a baseline, we also train the model proposed by Carbajal
et al. (2016). This model uses 64-dimensional features com-
posed of 7 MFCC features with pitch track and 56 Shifted
Delta Coefficients (Torres-Carrasquillo et al., 2002). This
captures short-time information in speech as well as local
changes within a 200 ms window, including intonation. The
model’s shift towards each test utterance, so-called i-vectors
(Dehak, Kenny, Dehak, Dumouchel, & Ouellet, 2010), are
calculated and ABX tasks are run like the above, but with i-
vectors.

Results

The top section of Table 1 gives the results of simulat-
ing language discrimination behavior in newborns using the

Table 1: ABX accuracy for both models. Perfect discrimination
is 100%; chance discrimination is 50%. Newborns discrimi-
nate English and Japanese, but not English and German.

Rhythm Model Harmonic Percussive Natural
Eng. vs. Jap. 44.03% 64.94% 55.12%
Eng. vs. Ger. 48.75% 47.14% 46.67%
Baseline Model  Full MFCC MFCC+pitch
Eng. vs. Jap. 70.20% 57.35% 60.49%
Eng. vs. Ger. 99.82% 51.80% 65.24%

musically-inspired model from Tsunoo et al. (2009). When
models are trained using natural and percussive features, per-
formance aligns exactly with newborns’ behavior. The model
trained with harmonic features, however, does not discrimi-
nate between either pair of languages.

In contrast, the baseline model discriminates between both
pairs of languages. lts performance for English and German
is near perfection, which is not similar to newborns’ behavior,
as infants are not able to discriminate between these two lan-
guages until 7 months (Chong et al., 2018). One possible ex-
planation for the behavior of the baseline model is its access
to intonation (i.e. pitch and its contour along an utterance).
While input to the baseline model explicitly included the pitch
track and its local change, young infants have limited ability to
discriminate between languages using intonational cues, as
they are not able to use intonation cues to discriminate be-
tween English and German until 7 months of age (Chong et
al., 2018). If intonation accounts for the behavior of the base-
line model, then a version of this model without access to in-
tonation would behave more like newborns.

To test this, we simulated the baseline model again using
two sets of features. The first set included only MFCCs without
direct pitch information, and the second set included MFCCs
and the pitch track. We found that the version with MFCCs
behaved like newborns this time, while the version with the
pitch track still distinguished between English and German.
These results confirm that taking away intonational cues from
the model’s input leads to more newborn-like performance. In
line with this observation, our model likely does not have ac-
cess to the pitch information at all since we binned the spectral
output in 1 kHz-wide bins, which likely caused its newborn-like
behavior. This suggest that our model is closer to the repre-
sentation of human newborns, in which rhythm, not intonation,
is primarily used for language discrimination.

Discussion

In this work, we simulated the perception and representation
of speech rhythm using a music-inspired model. We found
that the model can discriminate the same language pairs as
newborns, but only when percussives are present. We also
found evidence that our model, similar to young infants, is not
sensitive to intonational cues. The model's success at mod-



eling speech rhythm perception, combined with its previous
success in capturing musical rhythm, supports a unified repre-
sentation of rhythm in speech and music. Also, connected with
the evidence that percussives represent rhythm in music well
(Tsunoo et al., 2009), our results suggest that percussives are
relevant for rhythm representation, unlike harmonics.

Our simulations add to the evidence regarding the cues
that newborns use to discriminate languages. Newborns can
discriminate rhythmically different languages even when the
speech is resynthesized in a monotone manner, where all
intonation information is lost. As reviewed earlier, newborns
are also not sensitive to intonation enough to discriminate be-
tween English and German (Chong et al., 2018). Together,
this evidence suggests that intonation may be separately rep-
resented and acquired from rhythm, with newborns relying on
rhythm more than intonation.

While the application of harmonics and percussives to
speech processing is new in this project, a similar dichotomy
is seen in some previous observations in the literature. In
Slater et al. (2017), percussionists and vocalists are found to
have better neural encoding for fast-changing acoustics and
harmonic structure in speech, respectively. Whereas the neu-
ral representation of speech rhythm has generally been as-
sociated with the acoustic envelope of speech (e.g., as re-
viewed by Poeppel & Assaneo, 2020), our study highlights
percussives—a cue that is not well captured by the acous-
tic envelope—as important for rhythm perception. Further re-
search into the relationship between percussives and neural
encoding of rhythm may reveal how rhythm is represented in
the brain.
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