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Infants segment words from fluent speech during the same period when they are learning phonetic
categories, yet accounts of phonetic category acquisition typically ignore information about the words in
which sounds appear. We use a Bayesian model to illustrate how feedback from segmented words might
constrain phonetic category learning by providing information about which sounds occur together in
words. Simulations demonstrate that word-level information can successfully disambiguate overlapping
English vowel categories. Learning patterns in the model are shown to parallel human behavior from
artificial language learning tasks. These findings point to a central role for the developing lexicon in
phonetic category acquisition and provide a framework for incorporating top-down constraints into
models of category learning.
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One of the first challenges for language learners is deciding
which speech sound distinctions are and are not relevant in their
native language. Learning to group perceptual stimuli into catego-
ries is a complex task. Categories often overlap, and boundaries
are not always clearly defined. This is especially apparent when
one looks at sound categories that occur in natural language.
Phonetic categories, particularly vowel categories, show substan-
tial acoustic overlap (see Figure 2A). Even a single speaker’s
productions of a specific category in a specific context are vari-
able. Phonetic categories contain even more variability across
ranges of speakers and contexts. The high degree of overlap
suggests that infants learning language sometimes need to attend
carefully to slight differences in pronunciation between different

categories while simultaneously ignoring large degrees of within-
category variability.

Infants nevertheless appear to learn about the sound categories
of their native language quite early. Babies initially discriminate
sound contrasts whether or not they are functionally useful in the
native language, but this ability declines for most nonnative con-
sonant1 contrasts between 6 and 12 months of age (Werker & Tees,
1984). During the same period, infants’ ability to discriminate
perceptually difficult consonant contrasts in their native language
is enhanced (Narayan, Werker, & Beddor, 2010). Vowel percep-
tion begins to reflect the learner’s native language as early as 6
months (Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992).
These perceptual changes are generally interpreted as evidence for
infants’ developing knowledge of native phonetic categories, im-
plying that young learners have a remarkable ability to acquire
speech sound categories amidst high acoustic overlap.

Identifying the mechanisms that support infants’ early language
learning abilities has been a central focus of research in language
acquisition. Statistical learning theories propose that infants ac-
quire each layer of structure by observing statistical dependencies
in their input. Infants show robust sensitivity to statistical patterns.
They extract phonological and phonotactic regularities that govern
sound sequences (Seidl, Cristià, Bernard, & Onishi, 2009; White,
Peperkamp, Kirk, & Morgan, 2008), use transitional probabilities
to segment fluent speech into word-sized units (Pelucchi, Hay, &
Saffran, 2009; Saffran, Aslin, & Newport, 1996), and notice ad-
jacent and nonadjacent dependencies between words in grammar
learning tasks (Gómez, 2002; Gómez & Gerken, 1999). Learners

1 These categories are based on vowel data from Hillenbrand et al. (1995)
that were downloaded from http://homepages.wmich.edu/~hillenbr/.
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are also sensitive to statistical structure in nonlinguistic stimuli
such as visual shapes (Fiser & Aslin, 2002) and auditory tones
(Saffran, Johnson, Aslin, & Newport, 1999), suggesting that sta-
tistical learning is a domain general strategy for discovering struc-
ture in the world.

Distributional learning has been proposed as a statistical learn-
ing mechanism for phonetic category acquisition (Maye & Gerken,
2000; Maye, Werker, & Gerken, 2002). Learners are hypothesized
to obtain information about which sounds are contrastive in their
native language from the distributions of sounds they hear. Learn-
ers hearing a bimodal distribution of sounds along a particular
acoustic dimension can infer that the language contains two cate-
gories along that dimension; conversely, a unimodal distribution
provides evidence for a single phonetic category. Distributional
learning is consistent with empirical evidence showing that infants
attend to distributional cues at the age when they are first learning
phonetic categories (Maye et al., 2002). Computational modeling
results also suggest that a distributional learning strategy can be
successful at recovering phonetic categories that have sufficient
separation in acoustic space (McMurray, Aslin, & Toscano, 2009;
Vallabha, McClelland, Pons, Werker, & Amano, 2007). However,
distributional learning is less effective when categories have a high
degree of overlap. Overlapping categories pose a problem because
the distribution of sounds in two overlapping categories can appear
unimodal (see Figure 1), misleading a learner into believing there
are too few categories.

In this article, we show that learners can overcome the problem
of overlapping categories by using feedback from higher levels of
structure to constrain category acquisition. Specifically, we show
that using feedback from a developing lexicon can improve pho-
netic category acquisition. Interactive learning of words and
sounds is beneficial when sounds occur in distinct lexical contexts.
The blue and red categories from Figure 1 overlap acoustically
when considered in isolation, but an interactive learner can notice
that, for example, the blue sounds occur in the word milk and the
red sounds occur in the word game. These lexical contexts are
easily distinguishable on the basis of acoustic information and can
be used as disambiguating cues to sound category membership.
This type of interactive learning does not require meanings or
referents to be available to the learner; it requires only that learners

use acoustic information to categorize word tokens. Thus, infor-
mation from lexical contexts has the potential to contribute to early
development, even before infants have learned the meanings of
many words. Our theoretical framework is similar to that proposed
by Swingley (2009), but here we provide a formal account of this
interactive learning hypothesis. Our analysis is framed at Marr’s
(1982) computational level, examining the statistical solution to
the sound category learning problem in a structured environment
where sounds are organized into words. We quantitatively inves-
tigate the potential benefit of interactive learning by building a
computational model that learns to categorize sounds and words
simultaneously and show that word-level information provides an
informative cue that can help learners acquire phonetic categories.

Although our focus in this article is on linguistic categories, the
modeling that we develop here may well have broader application.
Distributional learning, for example, can be thought of as a domain
general strategy for recovering underlying structure. Learning
mechanisms that rely on probability density estimation, in which
categories are defined by their probability of producing different
stimuli, are popular in research on categorization (Ashby &
Alfonso-Reese, 1995). The specific models that have been pro-
posed as accounts of phonetic category learning (e.g., Gaussian
mixture models; de Boer & Kuhl, 2003; Dillon, Dunbar, & Idsardi,
2013; McMurray et al., 2009; Toscano & McMurray, 2010; Val-
labha et al., 2007) have also been proposed as accounts of category
learning more generally (Anderson, 1990; Rosseel, 2002; Sanborn,
Griffiths, & Navarro, 2010). Although studies of category learning
have tended to focus on the acquisition of categories in isolation
from their context, earlier work on the effects of prior knowledge
on category learning (e.g., Heit & Bott, 2000; Murphy & Allo-
penna, 1994; Pazzani, 1991; Wattenmaker, Dewey, Murphy, &
Medin, 1986) and more recent work on the consequences of
learning multiple categories simultaneously (Canini & Griffiths,
2011; Canini, Shashkov, & Griffiths, 2010; Gureckis & Goldstone,
2008) suggests that our conclusions about the importance of using
information from multiple levels of structure may have implica-
tions beyond just language acquisition.

In the following, we first introduce the idea of modeling cate-
gory learning as density estimation and show how distributional
learning can be viewed in this framework. We then show through

A B

Figure 1. The problem of overlapping categories. (A) Distribution of sounds in two overlapping categories.
The points were sampled from the Gaussian distributions representing the /I/ and /e/ categories based on men’s
productions from Hillenbrand et al. (1995). (B) These sounds appear as a unimodal distribution when unlabeled,
creating a difficult problem for a distributional learner.
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an initial simulation that distributional learning can be challenging
when categories have a high degree of overlap. Our next section
explores how constraints from higher level structure might sup-
plement distributional learning, formalizing a lexical-distributional
model that learns word- and sound-level information simultane-
ously. Three simulations quantify the benefit of interactive learn-
ing by comparing performance of our lexical-distributional model
directly to that of distributional models. We conclude by showing
that qualitative behavior of our lexical-distributional model mir-
rors patterns from experiments on sound category learning, sug-
gesting that people behave as interactive learners, and by discuss-
ing the plausibility of the interactive learning approach for
language acquisition and for category learning more generally.

Distributional Learning

Rational analyses of category learning (e.g., Anderson, 1990;
Ashby & Alfonso-Reese, 1995) reduce the psychological problem
of learning a new category to the statistical problem of density
estimation: Learning a category requires estimating a probability
distribution over the items that belong to the category. A learner
can use the resulting distributions to quickly decide which cate-
gory a new item belongs to, with categorization being a simple
matter of probabilistic inference. This perspective provides a novel
interpretation of traditional models of categorization such as pro-
totype and exemplar models (Ashby & Alfonso-Reese, 1995) and
provides a productive link between ideas from statistics and the-
ories of human category learning (Griffiths, Sanborn, Canini,
Navarro, & Tenenbaum, 2011).

Distributional learning accounts of early language acquisition
(Maye et al., 2002) likewise propose that phonetic category acqui-
sition can be viewed as a density estimation problem. That is,
adult-like discrimination and processing abilities are assumed to
reflect knowledge of the distributions associated with native lan-
guage phonetic categories. Distributional learning specifies one
way in which this knowledge might be acquired: Learners observe
sounds in their input that cluster in perceptual space and hypoth-
esize categories to coincide with the locations of those clusters.
They can use the clusters they observe to estimate the probability
distribution associated with each category. This gives them a way
of simultaneously learning which categories are in their language
and which sounds are associated with each category.

Distributional learning is supported by experimental evidence
that infants are sensitive to distributions of sounds at 6 and 8
months. Maye et al. (2002) familiarized infants with stop conso-
nants ranging from unaspirated [t] to [d]. Although these sounds
occur as variants of different phonemes in English, they are not
used contrastively, and always appear in different phonological
environments. Adults have been shown to have difficulty distin-
guishing these sounds in laboratory settings, whereas young in-
fants are sensitive to the distinction (Pegg & Werker, 1997). Maye
et al. investigated infants’ ability to use statistical information to
constrain how they interpret these sounds. During familiarization,
infants heard either a bimodal distribution of sounds, mimicking
the distribution that might be associated with two phonetic cate-
gories, or a unimodal distribution, mimicking the distribution that
might be associated with a single phonetic category. Infants who
heard the sounds embedded in a bimodal distribution exhibited
better discrimination of the endpoint stimuli at test than infants

who heard the sounds embedded in a unimodal distribution, sug-
gesting that participants’ sensitivity to this contrast had changed to
reflect the distributions of sounds that they heard. Bimodal distri-
butions can also facilitate discrimination of a difficult voicing
continuum (Maye, Weiss, & Aslin, 2008) and of a place of
articulation continuum (Yoshida, Pons, Maye, & Werker, 2010) in
infants. Adults retain sensitivity to distributional information in
consonants (Maye & Gerken, 2000) and vowels (Gulian, Escudero,
& Boersma, 2007), though sensitivity to distributional cues ap-
pears to decrease as phonetic category acquisition progresses (Yo-
shida et al., 2010).

The period around 6–8 months when infants show sensitivity to
distributional information corresponds closely to the period when
infants lose sensitivity to nonnative contrasts (Werker & Tees,
1984). This suggests that learners can make use of distributional
information during the time when they are acquiring phonetic
categories, and it is intuitively plausible that finding clusters of
sounds would be a useful strategy for acquiring phonetic catego-
ries. Computational modeling allows us to look more carefully at
the predicted outcome of distributional learning to determine
whether infants’ sensitivity would be predicted to facilitate pho-
netic category acquisition. If computational models can recover the
sound categories of a natural language through a purely distribu-
tional learning strategy, then this would lend credence to the
possibility that infants can do the same. The remainder of this
section provides an overview of computational models that have
been used to investigate the utility of distributional learning for
phonetic category acquisition.

Mixture Models

Models of phonetic category acquisition have implemented dis-
tributional learning by assuming that learners need to find the set
of categories that describe the distribution of sounds in acoustic
space, where each category is represented by a Gaussian (i.e.,
normal) distribution (de Boer & Kuhl, 2003; Dillon et al., 2013;
McMurray et al., 2009; Toscano & McMurray, 2010; Vallabha et
al., 2007). In this framework, phonetic category learning consists
of jointly inferring the mean, covariance, and frequency of each
Gaussian category as well as the category label of each sound. This
inference process has been implemented through a type of model
known as a Gaussian mixture model, which has also appeared in
the general literature on category learning (Anderson, 1990; Ros-
seel, 2002; Sanborn et al., 2010). By comparing the outcome of
learning in these models to the true set of phonetic categories in a
language, we can gain insight into the plausibility of distributional
learning as a mechanism for phonetic category acquisition.

Mixture models assume that there are several categories and that
each of the observed data points was generated from one of these
categories. In phonetic category acquisition, the categories are
phonetic categories and the data points represent speech sounds.
Mixture models typically assume that there is a fixed number of
categories C; here we refer to each category by a number c ranging
from 1 to C. Each category is associated with a probability distri-
bution p(x|c) that defines the probability of generating a stimulus
value x from category c. The probability distribution p(x|c) in
mixture models can take a variety of forms, but here we focus on
the case in which p(x|c) is a Gaussian distribution, so that recov-
ering p(x|c) is equivalent to recovering a mean !c and a covariance
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matrix "c. The observed data points are referred to as xi. Each data
point is assumed to be associated with a label zi, ranging between
1 and C, that indicates which category it belongs to. In an unsu-
pervised learning setting such as language acquisition, the labels zi

are unobserved. Learners need to recover the probability distribu-
tion p(x|c) associated with each category as well as the label zi

associated with each data point.
Inferring a probability distribution p(x|c) is straightforward

when a learner knows which stimuli belong to the category (i.e.,
when zi is known). If p(x|c) is a Gaussian distribution, the param-
eter estimates for ! and " that maximize the probability of the data
are given by the empirical mean and covariance

!c "
1

n !
zi"c

xi

!c "
1

n !
zi"c

"xi # !#"xi # !#T,

(1)

where n denotes the number of observed data points xi for which
zi # c. These equations give optimal estimates for category pa-
rameters when a learner has no prior knowledge about what the
category mean and covariance should be, but it is also straightfor-
ward to incorporate prior beliefs about these parameters in a
Bayesian framework using a type of prior distribution known as a
normal inverse Wishart distribution (see Gelman, Carlin, Stern, &
Rubin, 1995, for details).

Conversely, if the probability density function p(x|c) and fre-
quency p(c) associated with each category is known, it is straight-
forward to infer zi, assigning a novel unlabeled data point to a
category. This amounts to using Bayes’ rule,

p(c|x) "
p(x$c)p(c)

!
c′"1

C

p(x$c′)p(c′)
, (2)

to compute the posterior probability of category membership,
where x is the unlabeled stimulus, c denotes a particular category,
and the sum in the denominator ranges over the set of all possible
categories.

The problem faced by language learners acquiring phonetic
categories is difficult because neither category assignments zi for
individual stimuli nor probability density functions p(x|c) associ-
ated with phonetic categories are known in advance. This produces
a type of chicken-and-egg learning problem that is common to
many problems in language acquisition. Algorithms such as ex-
pectation maximization (EM; Dempster, Laird, & Rubin, 1977)
provide a principled solution to these types of problems by search-
ing for the parameters and category labels that maximize the
probability of the data. In phonetic category acquisition, learners
using the EM algorithm would begin with an initial hypothesis
about the category density functions, then iterate back and forth
between inferring category assignments for each sound they have
heard according to Equation 2 and inferring probability density
functions for each category according to Equation 1.

The EM algorithm has been used to test distributional models on
English vowel categories. De Boer and Kuhl (2003) fit Gaussian
mixture models to actual formant values in mothers’ spontaneous
productions of the /a/, /i/, and /u/ phonemes from the words sock,
sheep, and shoe. They compared model performance from infant-

and adult-directed speech and found better performance when the
models were trained on infant-directed speech, as measured by the
accuracy of the inferred category centers. This benefit of infant-
directed speech as training data was attributed to the increased
separation between categories that is typical of infant-directed
speech (Kuhl et al., 1997; but see McMurray, Kovack-Lesh, Good-
win, & McEchron, 2013). However, note that the /i/, /u/, and /a/
vowel categories used by de Boer and Kuhl are precisely those
vowel categories with maximal separation in acoustic space, and
children acquiring a full set of phonetic categories would face a
more difficult problem. We return to the issue of category sepa-
ration below.

Inferring the Number of Categories

The EM algorithm requires the number of categories to be
specified in advance. However, it is unlikely that human learners
know in advance how many phonetic categories they will be
learning, because this number varies across languages. McMurray
et al. (2009) and Vallabha et al. (2007) proposed an online se-
quential learning algorithm similar to EM that provides a way
around this limitation. The algorithm resembles EM in that it
iterates between estimation of category parameters and assignment
of a sound to a particular category. During each iteration the model
observes a single speech sound and assigns it to a category. It then
updates the mean, covariance, and frequency parameters of each
category on the basis of that sound (see Vallabha et al., 2007, for
a detailed description of these updates, which proceed by a method
of gradient descent). Automatic inference of the number of cate-
gories is achieved by eliminating categories whose frequency
drops below a predefined threshold. The model begins with a high
number of phonetic categories and prunes those that are not
needed.

Nonparametric Bayesian models provide a second option for
flexibly learning the number of categories. A type of nonparamet-
ric Bayesian model known as the Dirichlet process (Ferguson,
1973) has been used to model category learning in language and
other domains (Anderson, 1990; Goldwater, Griffiths, & Johnson,
2009, 2011; M. Johnson, Griffiths, & Goldwater, 2007; Sanborn et
al., 2010). Dirichlet processes provide a modeling framework
similar to the mixture models described above, but they differ from
traditional mixture models in that they provide a mechanism for
inferring an unbounded number of categories. Because of this,
Dirichlet process models are often referred to as infinite mixture
models (IMM). They infer the correct number of categories by
considering a potentially infinite number of categories but encod-
ing a prior bias toward fewer categories. This bias in the prior
distribution encourages the model to use only those categories that
are necessary to explain the data. Here we implement distributional
learning using the infinite Gaussian mixture model (Rasmussen,
2000), which assumes that the probability density function p(x|c)
associated with each category is Gaussian. We use Gibbs sampling
(Geman & Geman, 1984), a form of Markov chain Monte Carlo,
as an inference algorithm for this model. The details of the model
and inference algorithm are given in Appendix A.

The gradient descent models and the IMM each provide a way
of inferring the number of categories present in the data, and each
can be evaluated on its ability to recover the correct number of
categories. Previous work has examined this ability in both types
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of models. Using the gradient descent method, McMurray et al.
(2009) focused on a voicing contrast in consonants. They gener-
ated training data for the models by sampling sounds from Gauss-
ian distributions that mimicked the voice onset time distributions
of voiced and voiceless stops, then showed that their learning
algorithm recovered these two categories correctly. Vallabha et al.
(2007) performed similar experiments using vowels. They gener-
ated training data that mimicked the distributions associated with
single speakers producing /i/, /I/, /e/, and /ε/ in English or /i/, /i!/,
/e/, and /e!/ in Japanese. The most frequent learning outcome for
models trained on these data was to recover four categories in each
case. Models trained on English input data recovered categories
that were distinguished along all three relevant dimensions (F1, F2,
and duration), whereas models trained on Japanese input data
recovered categories that were distinguished primarily by F1 and
duration. For both consonants and vowels, then, the gradient
descent algorithm has yielded initial success in inferring the cor-
rect number of categories.

Dillon et al. (2013) examined the performance of the IMM in
acquiring a three-category vowel system from Inuktitut. They
considered the possibility that the model might acquire categories
at either the phonemic level (three categories) or the phonetic level
(six categories). Simulations showed that given different sets of
parameters, the model could acquire either three or six categories,
supporting a successful outcome of distributional learning. How-
ever, the authors also identified several ways in which the models’
solutions were insufficiently accurate to provide input for learning
higher levels of linguistic structure.

Despite the success of these models, it is not yet clear whether
distributional learning can accommodate more realistic input data.
Phonetic categories, particularly vowel categories, can show a high
degree of overlap (e.g., Peterson & Barney, 1952; Hillenbrand,
Getty, Clark, & Wheeler, 1995), whereas the input data to these
computational models contained only limited category overlap.
Categories involved in the voicing contrast from McMurray et al.
(2009) are well separated. The vowel contrasts used by Vallabha et
al. (2007) were composed of neighboring categories that presum-
ably had some degree of overlap, but even here, each model was
trained on data from a single speaker. The training data therefore
had lower within-category variability than one would expect to
find in real language input, and this presumably led to a lower
degree of overlap. The data used by Dillon et al. (2013) contained
higher amounts of category overlap, but in this case the authors
identified several shortcomings in the distributional model’s per-
formance. Because their article used the IMM, and used training
data that did not conform to their Gaussian assumptions, it is
difficult to compare their results directly to those obtained through
the gradient descent algorithm on data generated from Gaussians.
Our initial simulation tests both types of distributional learning
models directly on a single data set in which the categories have a
high degree of overlap, comparing this to performance on a data
set in which categories have a lower degree of overlap.

Simulation 1: The Problem of Overlapping Categories

Overlap between categories can potentially make the learning
problem more difficult because the distribution of sounds from two
categories can appear unimodal, misleading a distributional learner
into assigning the sounds to one category. To explore this chal-

lenge, we test the ability of distributional learning models to
recover the vowel categories from Hillenbrand et al. (1995). These
categories exhibit high acoustic variability and therefore provide a
challenging test case for distributional models.

Our simulations use two distributional learning models: the gradient
descent algorithm from Vallabha et al. (2007) and the IMM. Each model
provides a unique set of advantages. The gradient descent model
has been used previously to investigate phonetic category acqui-
sition, and its use here facilitates comparison with this previous
work. Its algorithm is sequential and is thus arguably more psy-
chologically plausible than the Gibbs sampling algorithm used
with the IMM (but see Sanborn et al., 2010, for a sequential
algorithm that can be used with the IMM). However, the drawback
of using gradient descent is that the model cannot find a set of
globally optimal category parameters, and instead converges to a
locally optimal solution. The Gibbs sampling algorithm used with
the IMM has some potential to overcome the problem of local
optima. Furthermore, there is a straightforward way to extend the
IMM to incorporate multiple layers of structure (Teh, Jordan, Beal,
& Blei, 2006), and we take advantage of this flexibility to create
the interactive lexical-distributional learning model introduced in
the next section. Using the IMM as a distributional learning model
thus allows for a direct comparison between the distributional and
lexical-distributional learning strategies.

Throughout this article, we evaluate models on their ability to
recover the correct number of categories, a measure that has
become standard for evaluating success in unsupervised models of
phonetic category learning (e.g., Dillon et al., 2013; McMurray et
al., 2009; Vallabha et al., 2007). In addition, to assess the quality
of these categories, we evaluate the models’ ability to identify
which sounds from the corpus are in each category. Our analyses
look at the categories recovered by each model, rather than at the
models’ ability to use those categories in specific psycholinguistic
tasks. Our assumption is that a learning strategy that supports
robust category learning would also support use of those catego-
ries, either implicitly or explicitly, in psycholinguistic tasks.

Method

Corpus preparation. Phoneme and word frequencies were
obtained from the Child Language Data Exchange System
(CHILDES) parental frequency count (Li & Shirai, 2000; Mac-
Whinney, 2000). We converted all words in the frequency data to
their corresponding phonemic representations using the Carnegie
Mellon University (CMU) Pronouncing Dictionary. If the diction-
ary contained multiple phonemic forms for a word, the first was
used. Stress markings were removed, diphthongs /aυ/, /aI/, and /ɔI/
were converted to sequences of two phonemes, and /!/ was treated
as a single phoneme rather than a sequence of two phonemes. Any
words whose orthographic representation in CHILDES contained
symbols other than letters of the alphabet, hyphen, and apostrophe
were excluded. In addition, words not found in the CMU Pro-
nouncing Dictionary were excluded. This resulted in the exclusion
of 7,911 types, representing 28,447 tokens (approximately 1% of
tokens), and left us with a phonematized word list of 15,825
orthographic word types, representing 2,548,494 tokens. This pho-
nematized word list was used to compute empirical probabilities
for each vowel (see Table 1) for constructing the corpora in
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Simulations 1 and 2 and to directly sample word tokens for
constructing the corpora in Simulations 3 and 4.

We obtained phonetic category parameters from production data
collected by Hillenbrand et al. (1995). Production data by men,
women, and children were used to compute empirical estimates of
category means and covariances in the two-dimensional space
given by the first two formant values using Equation 1. This gave
us a set of phonetic categories with high variability and therefore
high overlap among neighboring categories. To obtain parameters
for a set of categories with lower overlap, we estimated means and
covariances based only on productions by men. Note that schwa
was absent both from the production data from Hillenbrand et al.
and from the CMU Pronouncing Dictionary. Thus, schwa was not
included as a vowel in any of our simulations.

Vowel tokens in each corpus were sampled from these Gaussian
distributions. The same Gaussian parameters were used to sample
each token of a phonetic category that appeared in a corpus; the
acoustic values in the corpora thus did not reflect any contextual
(e.g., coarticulatory) effects, and conformed to the Gaussian as-
sumptions of all the models tested.

For Simulation 1, token frequencies from Table 1 were used to
sample the labels zi for two corpora of 20,000 vowels each. To
produce each acoustic value xi, a set of formant values was
sampled from the Gaussian distribution associated with category
zi. The first corpus used phonetic category distributions computed
from all speakers’ productions, and the second corpus used pho-
netic category distributions computed from men’s productions
only. This created two corpora consisting of 20,000 F1–F2 pairs,
one with high within-category variability and one with lower
within-category variability. The label for each sound zi was not
provided to the models as training data, but was used for model
evaluation.

Simulation parameters. Parameters used for the gradient de-
scent algorithm were based on those from Vallabha et al. (2007).
Like McMurray et al. (2009), however, we found that the initial
category variance parameter Cr affected performance of this algo-
rithm. Here we present results using Cr # 0.02, which we found to
yield quantitatively and qualitatively better results than the value
of 0.2 used by Vallabha et al. Other parameters, including the

number of sweeps and the learning rate parameter, were identical
to those used by Vallabha et al. Note that although we used 50,000
sweeps, the training data consisted of only 20,000 points; thus,
training points were reused over the course of learning.

Parameters in the IMM include the strength of bias toward fewer
phonetic categories and the model’s prior beliefs about phonetic
category means and covariances. The bias toward fewer phonetic
categories is controlled by the concentration parameter $C, with
smaller values corresponding to stronger biases. We explored a
range of values for this parameter and found little effect on model
performance; these simulations use a value of $C # 10. The prior
distribution over phonetic category parameters GC is a normal
inverse Wishart distribution that is controlled by three parameters:
m0, S0, and %0. These parameters can be thought of as reflecting the
mean, sum of squared deviations from the mean, and number of
data points in a small amount of pseudodata that the learner
imagines having assigned to each new category. Parameters were

set to m0 " $ 500

1500 %, S0 " $1 0

0 1 %, and %0 # 1.001. They therefore

encoded a bias toward the center of vowel space that was made as
weak as possible2 so that it could be overshadowed by real data.

Evaluation. Model performance was evaluated quantitatively
by measuring the number of categories recovered by each model
and computing two pairwise measures of performance, the F-score
and variation of information (VI), which are described in detail in
Appendix C. The F-score is a pairwise performance measure that
is the harmonic mean of pairwise precision and recall, which are
often referred to as accuracy and completeness in the psychology
literature. It measures the extent to which pairs of points are
correctly categorized together, and ranges between 0 and 1, with
higher numbers corresponding to better performance. VI is a
symmetric measure that evaluates the information theoretic differ-
ence between the true clustering and the clustering found by the
model. It is a positive number, with lower numbers corresponding
to better performance. Both performance measures require cate-
gory assignments for each sound in the corpus. For the IMM we
used the category assignments from the final iteration of the Gibbs
sampling algorithm; these should correspond to a sample from the
posterior distribution on category assignments. The gradient de-
scent learning algorithm does not directly yield a set of category
assignments, but we obtained assignments by sampling from the
posterior distribution over categories, p(c|x) (Equation 2), for each
sound.

Results and Discussion

Results from each model are shown in Table 2 and illustrated in
Figure 2. Whereas 12 categories were used to generate the corpus,
the gradient descent model from Vallabha et al. (2007) recovered
only six categories from the corpus with high category overlap and
eight categories from the corpus with lower category overlap. The
IMM recovered 10 and 11 categories from these two corpora,
respectively. However, the higher number of categories found by
the IMM did not lead to better performance on the quantitative
measures in either case. This is likely due to the fact that the extra
category divisions found by the IMM did not match precisely with

2 To form a proper distribution, %0 needs to be greater than d & 1, where
d is the number of phonetic dimensions.

Table 1
Normalized Empirical Probabilities of Each Vowel Computed
From the Phonematized CHILDES Parental Frequency Count

Vowel

Empirical probability

In word tokens In word types

/æ/ .080 .068
/ɑ/ .125 .105
/ɔ/ .038 .035
/'/ .067 .075
/e/ .039 .048
/!/ .035 .083
/I/ .177 .169
/i/ .077 .099
/o/ .061 .041
/υ/ .041 .019
/%/ .176 .229
/u/ .083 .030

Note. CHILDES # Child Language Data Exchange System.
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the true category divisions. For example, the long diagonal cate-
gory in Figure 2C does not correspond to a true category, and even
in Figure 2F, the division between the /I/ and /e/ categories is
incorrect. Neither model was able to recover the 12 categories used
to generate the data. This was true of both corpora, but the problem
was more pronounced in the corpus with high acoustic overlap
between categories.

These results highlight the potential problem posed by overlap-
ping categories. Often tests of distributional learning are conducted
on corpora in which vowels have an artificially low degree of
overlap. De Boer and Kuhl (2003) selected three vowels with a
large degree of separation, and Vallabha et al. (2007) removed
speaker variability from the training data. Our simulations suggest
that this lower degree of overlap between categories may have
been critical to the models’ success. This corroborates the findings

of Dillon et al. (2013) and suggests that more realistic data can
potentially pose a problem for the types of distributional learning
models that simply look for clusters of sounds in the acoustic
input.

Our results from this simulation should be interpreted with
caution, as it is not clear to what extent we have over- or under-
estimated the difficulty of the learning problem. Some degree of
overlap can be overcome by using additional dimensions such as
duration (Vallabha et al., 2007) and formant trajectories (Hillen-
brand et al., 1995), and augmenting the data with information from
these extra dimensions has the potential to improve performance in
both models. Learning might also be supported by the increased
separation between category means found in infant-directed
speech (Kuhl et al., 1997), though it is not yet clear whether this
advantage persists when one considers the increased within-
category variability of infant-directed speech, especially for con-
trasts that do not involve the point vowels /a/, /i/, and /u/ (Cristià
& Seidl, 2013; McMurray et al., 2013). Cristià and Seidl (2013),
for example, suggested that some vowel contrasts may be hypo-
articulated, that is, less distinct in infant-directed speech than in
adult-directed speech. However, it is possible the data used in this
simulation were simply too impoverished to support acquisition of
a full vowel system in either models or humans. Because our
training data were sampled from Gaussian distributions, the IMM
is also likely to show better performance if trained on a larger
corpus, though this would not necessarily be the case for non-
Gaussian data. On the other hand, additional variability beyond

Table 2
Phonetic Categorization Scores From the Infinite Mixture Model
(IMM) and Gradient Descent Algorithm (GD) in Simulation 1

Variable

All speakers Men only

IMM GD IMM GD

Number of categories 10 6 11 8
F-score 0.453 0.480 0.699 0.727
Variation of information 3.195 2.677 1.678 1.440

Note. The true number of phonetic categories is 12.

A B C

FED

Figure 2. Results from Simulation 1. Ellipses delimit the area corresponding to 90% of vowel tokens
corresponding to vowel categories for all speakers from Hillenbrand et al. (1995) that were used to generate the
first corpus (A) and the resulting categories found by the gradient descent algorithm (B) and the infinite mixture
model (C); and vowel categories for men only from Hillenbrand et al. that were used to generate the second
corpus (D) and the resulting categories found by the gradient descent algorithm (E) and the infinite mixture
model (F). Figure 2A adapted with permission from “Acoustic Characteristics of American English Vowels,” by
J. Hillenbrand, L. A. Getty, M. J. Clark, and K. Wheeler, 1995, Journal of the Acoustical Society of America,
97, p. 3103. Copyright 1995 by Acoustical Society of America.
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what is reflected in Figure 2A is likely to arise through contextual
variation, such as coarticulation with neighboring sounds, making
the learning problem more difficult than is evident from the
Hillenbrand et al. data. On the basis of our results, we wish to
merely suggest the possibility that distributional learning may not
be as robust as is often assumed. It is therefore important to
consider possible supplementary learning mechanisms that could
lead to more robust acquisition of phonetic categories. We propose
one alternative strategy that children might use for learning pho-
netic categories, following Swingley (2009): If children are able to
learn information about words and sounds simultaneously, they
can use word-level information to supplement distributional learn-
ing.

Incorporating Lexical Constraints

Young infants show evidence of segmenting word-sized units at
the same time that they are acquiring phonetic categories. Eight-
month-olds track transitional probabilities of the speech they hear,
discriminating words from nonwords and part-words based purely
on this statistical information (Saffran et al., 1996). Older infants
can learn to map these segmented words onto referents (Graf Estes,
Evans, Alibali, & Saffran, 2007), suggesting that infants use their
sensitivity to transitional probabilities to begin learning potential
word forms for their developing lexicon. Studies using more
naturalistic stimuli have demonstrated that infants can use stress
and other cues to segment words from sentences and map these
segmented words onto words they hear in isolation. Six-month-old
infants can use familiar words such as Mommy to segment neigh-
boring monosyllabic words from fluent sentences (Bortfeld, Mor-
gan, Golinkoff, & Rathbun, 2005), and a more general ability to
segment monosyllabic and bisyllabic words develops over the next
several months (Jusczyk & Aslin, 1995; Jusczyk, Houston, &
Newsome, 1999), during the same time that discrimination of
nonnative sound contrasts declines.

Segmentation tasks with naturalistic stimuli require infants not
only to attend to segmentation cues, but also to ignore the within-
category variability that distinguishes different word tokens. In-
fants need to recognize that the words heard in isolation are
instances of the same words that they heard in fluent speech. There
can be substantial acoustic differences among these different word
tokens. Thus, infants as young as 6 months, who presumably have
not yet finished acquiring native language phonetic categories,
appear to be performing some sort of rudimentary categorization
of the words they segment from fluent speech. Although young
infants may not know meanings of these segmented words, they
seem to be categorizing the word tokens on the basis of acoustic
properties. This suggests a learning trajectory in which infants
simultaneously learn to categorize both speech sounds and words,
potentially allowing the two learning processes to interact.

Interaction between sound and word learning is not present in
distributional learning theories. Distributional learning treats each
sound in the corpus as being independent of its neighbors, ignoring
higher level structure. The independence assumption has been
present in both empirical and computational work. In experiments,
infants have heard only isolated syllables during familiarization.
This type of familiarization forces infants to treat those syllables as
isolated units. Models of distributional learning similarly assume
that infants consider only isolated sounds. In fact, distributional

learning is precisely the type of statistical solution to the category
learning problem that a learner should use if sounds were gener-
ated independently of their neighbors.

Here we demonstrate the importance of higher level structure by
considering the optimal solution to the phonetic category learning
problem when one assumes that sounds are instead organized into
words. Throughout the remainder of this article, we will distin-
guish between words, acoustic tokens in the corpus, and lexical
items, categories (word types) that represent groupings of acoustic
tokens. Just like speech sounds are categorized into phonetic
categories, we will assume that words are categorized into lexical
items. Given this distinction, we can now use our Bayesian frame-
work to define a lexical-distributional model that acquires phonetic
categories and lexical items. Our model differs from distributional
models in the hypothesis space it assigns to learners. A distribu-
tional model’s hypotheses consist of sets of phonetic categories,
and learners are assumed to optimize the phonetic category inven-
tory directly to best explain the sounds that appear in the corpus.
In contrast, the lexical-distributional model’s hypotheses are com-
binations of sets of phonetic categories and sets of lexical items.
Under this model learners optimize their lexicon to best explain the
word tokens in the corpus, while simultaneously optimizing their
phonetic category inventory to best explain the lexical items that
they think generated the corpus. This allows the lexical-
distributional model to incorporate feedback from the developing
lexicon in phonetic category learning.

Our lexical-distributional learning model uses the same phonetic
category structure from the IMM, allowing a potentially infinite
number of Gaussian phonetic categories but incorporating a bias
toward fewer categories. The model additionally includes a lexicon
in which lexical items are composed of sequences of phonetic
categories. Parallel to the phonetic category inventory, the lexicon
contains a potentially infinite number of lexical items but incor-
porates a bias toward fewer lexical items. Word tokens in a corpus
are assumed to be produced by selecting a lexical item from the
lexicon and then producing an acoustic value from each phonetic
category contained in that lexical item. We make the simplifying
assumption that each phonetic category corresponds to the same
acoustic distribution regardless of context, and thus assume that
there is no phonological or coarticulatory variation. We consider in
the General Discussion how such variation could be accommo-
dated in an interactive model. We additionally assume that there
are no phonotactic constraints, so that phonetic categories are
selected independently from the phonetic category inventory re-
gardless of their position in a word. Given these assumptions and
a corpus of word tokens, the model needs to simultaneously
recover the set of lexical items and the set of phonetic categories
that generated the corpus. The model and inference algorithm are
described in detail in Appendix B.

Our model is aimed at identifying the learning outcome that one
would expect of a learner that makes combined use of sound and
word information in a statistically sensible way. Because our
framework allows us to implement joint sound and word learning,
using this framework provides important data on the utility of an
interactive learning strategy, and these data can be used to inform
future research into the mechanisms that might support interactive
learning. In this work we do not address questions of implemen-
tation and algorithm, but we consider in the General Discussion
how such questions might be addressed in the future.
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We present three simulations that examine the extent to which a
lexical-distributional learning strategy can help a learner acquire
the categories of a natural language, examining learning perfor-
mance on corpora composed of acoustic values that are character-
istic of English vowel categories. Simulation 2 illustrates the
model’s basic behavior using artificial lexicons in which lexical
items consist only of vowels. Simulation 3 tests performance on a
lexicon of English words from child-directed speech, examining
the extent to which words in a natural language contain informa-
tion that can separate overlapping vowel categories. Simulation 4
extends the results from Simulation 3 to a corpus in which speaker
variability is reduced. Together, these simulations test the extent to
which making more realistic assumptions about the way in which
language data are generated can improve the phonetic category
learning outcome.

Simulation 2: Lexical-Distributional Learning of
English Vowels

Simulation 2 examines whether lexical-distributional learning
confers an advantage over distributional learning in recovering the
English vowel categories from Hillenbrand et al. (1995). Our aim
is to reveal a general advantage conferred by the use of higher
level structure. This advantage is likely to be strongest when the
higher level structure to be learned matches the learner’s assump-
tions about that structure. In consideration of this, our corpora for
this simulation were based on lexicons generated from the model’s
prior distribution over lexical items, but where the phonetic cate-
gories contained in those lexical items were vowels whose distri-
butions corresponded to Hillenbrand et al.’s data. We tested 10
corpora, each generated from a different artificial lexicon. Each
corpus consists of a sequence of 5,000 word tokens, with word
boundaries marked, in which vowel tokens are represented by
acoustic values based on data from Hillenbrand et al.

The corpora used for Simulation 2 were similar to those used for
Simulation 1, but they differed in two important ways. First, the
vowel tokens in these corpora were organized into sequences
corresponding to word tokens. Because of this, the corpora for
Simulation 2 incorporated the type of structural information that is
useful to the lexical-distributional model but is ignored by the
distributional model. Word boundaries were assumed to be known,
so that the model did not have to solve the segmentation problem.
Categorizing word tokens into lexical items is nevertheless a
nontrivial problem, as the model needs to decide on the basis of
acoustic values whether two words with the same number of
phonemes are the same or different. In lexical categorization we
compare our lexical-distributional model to a baseline model that
uses no distributional information from vowels. This baseline
model classifies word tokens together if they have the same
number of phonemes and thus produces a lower bound on the word
categorization behavior of the lexical-distributional model.

Second, although vowels in the artificial lexicon were drawn
from vowel type frequencies in the English lexicon, this did not
translate into equivalent token frequencies in the corpus because
word frequencies in the artificial lexicon did not match English
word frequencies. We ensured that these altered token frequency
distributions did not substantially reduce the difficulty of the
learning problem by testing the two distributional models on these
corpora.

Method

Corpus preparation. Ten training corpora were constructed.
For each corpus, a different set of lexical items consisting only of
vowels was drawn from the model’s prior distribution GL. Pho-
netic categories in these artificial lexicons were drawn according
to the type frequency distribution of vowels in the English lexicon
(see Table 1), but otherwise contained no phonotactic constraints.
This yielded lexical items such as /%/, /Iɑ/, /ε/, /%%!/, or /υε!/,
where the actual phonemic sequences contained in the lexicon
varied across the 10 training corpora. Lexical frequencies were
drawn according to the lexical-distributional model’s prior distri-
bution. The distribution GL used a geometric distribution over
word lengths with parameter 1⁄3. This parameter was different from
that used for inference but was chosen to help generate a lexicon
that contained enough information about all 12 vowel categories;
using the generating parameter for inference produced qualita-
tively similar results. This lexicon was used to sample a corpus of
5,000 word tokens. When generating these training data, we en-
sured that each vowel appeared at least twice in the lexicon and at
least 50 times in the corpus by discarding and resampling any
corpora that did not meet these specifications. The corpora each
had 5,000 word tokens, and the number of vowel tokens ranged
from 8,622 to 19,395 (mean corpus size was 13,489 vowel tokens).
The upper end of this range was comparable to the 20,000 vowel
tokens used in Simulation 1, whereas the lower end was much
smaller, providing potentially a substantial challenge for models of
category learning.

Simulation parameters. The prior distribution over phonetic
category parameters GC in the IMM and the lexical-distributional
model was identical to that used in Simulation 1 for the IMM, with
the bias toward fewer phonetic categories set to $C # 10. Param-
eters for the gradient descent algorithm were also identical to those
used in Simulation 1, with an initial category variance of Cr #
0.02.

The lexical-distributional model contains an additional param-
eter $L that controls the strength of the bias toward fewer lexical
items. Smaller values of the parameter correspond to stronger
biases. The distribution over word frequencies in the corpus was
generated from our model with $L # 10, and we simply used the
same value during inference. The prior distribution over lexical
items in the lexical-distributional model further includes a geo-
metric parameter g controlling the lengths of lexical items. This
parameter did not appear to have a large qualitative effect on
results; for the simulations presented here, it was set to a value of
g # 1⁄2.

Evaluation. Phonetic categorization performance was evalu-
ated in the same way as in Simulation 1. For the lexical-
distributional model and the IMM, we used category assignments
from the final iteration of Gibbs sampling, which should corre-
spond to a sample from the posterior distribution over category
assignments. For the gradient descent algorithm, each sound was
assigned probabilistically to one of the categories based on the
learned parameters using Equation 2.

Lexical categorization in the lexical-distributional and baseline
models was evaluated with these same performance measures
(F-score and VI; see Appendix C). However, because the lexical-
distributional model in principle allows different lexical items to
have identical phonemic forms, we computed both measures twice,
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in different ways, for this model. We first counted lexical items
with identical phonemic forms as separate, penalizing models for
treating words as homophones rather than a single lexical item. We
then recomputed the same measures after merging any lexical
items that had identical phonemic forms. In the true clustering, all
items with the same true phonemic form were treated as a single
lexical item, reflecting the gold standard for a form-based learner.
Thus, the model was not penalized under either measure for
merging homophones into a single category, but was penalized in
the first measure for splitting tokens of a single lexical item into
two categories.

Results and Discussion

The three models were tested on corpora generated from 10
artificial lexicons. The lexical-distributional model recovered an
average of 11.9 categories, successfully disambiguating neighbor-
ing categories in most cases. In seven of the 10 runs, the model
correctly recovered exactly 12 categories. Two corpora failed to
provide sufficient disambiguating information in the lexicon, and
in each of these simulations the model recovered only 11 of the 12
categories, mistakenly merging two categories. On the final corpus
the sample we obtained from the model’s posterior distribution
contained 13 categories. This 13th category was spurious, as only
two of 12,621 sounds in the corpus were assigned to it. Although
the sample we chose to analyze, from the final iteration of Gibbs
sampling, contained this 13th category, most posterior samples in
the Markov chain contained exactly 12 categories. In contrast to
the lexical-distributional model, the distributional models mistak-
enly merged several pairs of neighboring vowel categories, recov-
ering fewer categories than the lexical-distributional model in each
of the 10 corpora. The IMM recovered an average of eight of the
12 categories, and the gradient descent algorithm recovered an
average of 5.5 of the 12 categories. Neither distributional model
recovered all 12 categories in any of the 10 corpora. The lexical-
distributional model also outperformed the distributional models
along our two quantitative measures. F-scores were higher for the
lexical-distributional model than for the distributional models, and
VI scores were closer to 0 for the lexical-distributional model (see
Table 3).

We used a one-way analysis of variance to look for statistically
significant differences among the models along each measure of
phonetic categorization. There were highly significant differences
in number of categories, F(2, 27) # 79.35, p ( .0001; F-score,
F(2, 27) # 116.37, p ( .0001; and VI, F(2, 27) # 149.69, p (
.0001. Pairwise comparisons showed that the lexical-distributional

model outperformed the IMM in the number of categories, t(18) #
11.21, p ( .0001; F-score, t(18) # 15.80, p ( .0001; and VI,
t(18) # 16.92, p ( .0001; and outperformed the gradient descent
algorithm in the number of categories, t(18) # 11.60, p ( .0001;
F-score, t(18) # 13.10, p ( .0001; and VI, t(18) # 13.15, p (
.0001. Between the two distributional models, it was less clear
which exhibited better performance. The IMM outperformed the
gradient descent algorithm in number of categories recovered,
t(18) # 4.16, p # .0006, but the gradient descent algorithm
achieved a better score on VI, t(18) # 2.54, p # .02. The distri-
butional models were statistically indistinguishable from each
other in the F-scores they achieved, t(18) # 0.78, p # .4.

In word categorization, the lexical-distributional model also
outperformed the baseline model as measured by F-score and VI
(see Table 4). These differences were significant under both mea-
sures: F-score, t(18) # 9.93, p ( .0001; VI, t(18) # 7.99, p (
.0001.3 This indicates that interactive learning improved perfor-
mance in both the sound and word domains. Figures 3B–3D
illustrate a representative set of results from Corpus 1.

These results demonstrate that in a language in which phonetic
categories have substantial overlap, an interactive system can learn
more robustly than a purely distributional learner from the same
number of data points. Positing the presence of a lexicon helps the
ideal learner separate overlapping vowel categories, even when
phonological forms contained in the lexicon are not given to the
learner in advance.

However, there was some variability in performance, even for
the lexical-distributional model. For the majority of the corpora,
lexical structure was sufficient for the lexical-distributional model
to recover all 12 categories. In two corpora, however, lexical
structure successfully disambiguated 11 of the 12 categories, but
was insufficient to distinguish the last two categories. Thus, the
performance of a lexical-distributional learner depended to some
extent on the specific structure available in the lexicon. Lexical
items and lexical frequencies in all of these corpora were drawn
from the model’s prior distribution. A question therefore remains
as to whether a natural language lexicon contains enough disam-
biguating information to separate overlapping vowel categories.
Simulation 3 tests this directly using a corpus of lexical items from
English child-directed speech.

Simulation 3: Information Contained in the
English Lexicon

Simulation 3 tests the model’s ability to recover English vowel
categories when trained on English words. We test this using a
corpus of words from child-directed speech drawn from the
CHILDES parental frequency count (Li & Shirai, 2000; MacWhin-
ney, 2000). Because the corpus is created to mirror English child-
directed speech, vowel frequencies in both word types and word
tokens match those found in English, and the frequency distribu-
tion over words also matches the distribution over words that a

3 These statistics were computed on the condensed lexicon measure,
where any words with the same phonemic form are treated as a single
lexical item, but are still highly significant when each cluster is treated as
separate. We have not analyzed the number of lexical items recovered
because the true number of lexical items varied across the 10 corpora, so
averaging this value across multiple simulations is not terribly informative.

Table 3
Phonetic Categorization Scores for the Lexical-Distributional
Model (L-D), Infinite Mixture Model (IMM), and Gradient
Descent Algorithm (GD) in Simulation 2, Averaged Across All
10 Corpora

Variable L-D IMM GD

Number of categories 11.9 8 5.5
F-score 0.919 0.519 0.545
Variation of information 0.671 2.762 2.426

Note. The true number of phonetic categories is 12.
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child might hear. If the lexical-distributional model outperforms
the distributional models on this corpus, it would suggest that input
to English-learning children contains sufficient word-level infor-
mation to allow an interactive learner to recover a full set of vowel
categories.

The drawback of using real English lexical items is that they
necessarily contain consonants, and it is not straightforward to
represent consonants in terms of a small number of continuous
acoustic parameters. We sidestep this problem in our simulations
by representing consonants categorically. We therefore assume
that consonants have been perceived and categorized perfectly by
the learner. Though not entirely realistic, this assumption allows us
to explore vowel learning behavior in a realistic English lexicon.

We modify our baseline model for lexical categorization to take
this into account. Our new baseline model categorizes words
together if they have the same length and the same consonant
frame. As before, in phonetic categorization the lexical-
distributional model is compared with two distributional models,
the IMM and the gradient descent algorithm from Vallabha et al.
(2007).

Method

Corpus preparation. The corpus for Simulation 3 was con-
structed from the phonematized version of the CHILDES parental
frequency count that we used to compute vowel frequencies for
Simulations 1 and 2. However, we sampled entire words, rather
than individual vowels, in constructing our corpus for Simulation
3. Five thousand word tokens were sampled randomly with re-
placement based on their token frequencies. This yielded a corpus
with 6,409 vowel tokens and 8,917 consonant tokens. A set of
formant values for each vowel token was sampled from the Gauss-
ian distributions that were computed from the Hillenbrand et al.
data. Consonant tokens in the corpus were represented categori-
cally.

Simulation parameters. Parameters were identical to those
used in Simulation 2, except that a range of lexical concentration
parameters $L was tested to characterize the influence of this
parameter on model performance when using the true frequency
distribution of words in the English lexicon.

Table 4
Lexical Categorization Scores for the Lexical-Distributional
Model (L-D) and Baseline Model in Simulation 2, Averaged
Across All 10 Corpora

Variable L-D Baseline

F-score 0.799/0.854 0.523
Variation of information 1.263/0.921 1.853

Note. The first number evaluates performance by treating each cluster as
separate, regardless of phonological form, and the second number treats all
clusters with identical phonological forms as constituting a single lexical
item. The mean number of lexical items recovered is not shown, as the
target number of lexical items differed across the 10 corpora.

A B C D

E F G H

Figure 3. Results of Simulations 2 and 3. Ellipses delimit the area corresponding to 90% of vowel tokens for
Gaussian categories computed from men’s, women’s, and children’s production data in Hillenbrand et al. (1995;
A), recovered in Simulation 2 by the lexical-distributional model (B), the infinite mixture model (C), and the
gradient descent algorithm (D), and recovered in Simulation 3 by the lexical-distributional model with $L #
10,000 (E), the lexical-distributional model with $L # 10 (F), the infinite mixture model (G), and the gradient
descent algorithm (H). Figure 3A adapted with permission from “Acoustic Characteristics of American English
Vowels,” by J. Hillenbrand, L. A. Getty, M. J. Clark, and K. Wheeler, 1995, Journal of the Acoustical Society
of America, 97, p. 3103. Copyright 1995 by Acoustical Society of America.
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The prior distribution over lexical items in the lexical-
distributional model again used a geometric parameter g # 1⁄2
controlling the lengths of lexical items, but additionally included a
parameter to encode the relative frequencies of consonants and
vowels. Each phoneme slot in a lexical item was assumed to be
designated as a consonant with probability .62 (otherwise it was a
vowel). This probability was chosen to be approximately equal to
the proportion of consonants in the lexicon. For the purposes of
likelihood computation, consonants were assumed to be generated
from a Dirichlet process with concentration parameter $C # 10.

Results and Discussion

The number of categories recovered by each model is shown
in Table 5. In each case, the distributional models merged
several sets of overlapping categories. Performance of the
lexical-distributional model varied depending on the value of
the lexical concentration parameter. With a weak bias toward a
smaller lexicon, the model recovered the correct set of 12 catego-
ries, but with a stronger bias the model hypothesized more than 12
categories.4 These extra categories had more acoustic variability
than the actual categories in the corpus, encompassing more than
one vowel category. Examples of each of these types of behavior
are illustrated in Figures 3E–3H. Numerical phonetic categoriza-
tion performance was consistently higher in the lexical-
distributional model than in the distributional models (see Figure
4A), indicating that even for the models that hypothesized extra
categories, information from words improved vowel categorization
performance.

The number of lexical items recovered by each model is shown
in Table 6. Each lexical-distributional model recovered more lex-
ical items than the baseline model, indicating that the model used
distributional information to separate distinct lexical items that had
the same consonant frame. As expected, stronger biases toward a
smaller lexicon resulted in the recovery of a smaller lexicon. With
a strong bias, the model recovered fewer lexical items than were
used to generate the corpus, merging items that should have been
separated. With a weak bias, the model recovered more lexical
items than were used to generate the corpus, separating items that
should have been assigned to a single category. This separation of
items that should be categorized together decreases quantitative
lexical categorization performance, but performance improves
when different clusters with the same phonemic form are treated as
a single lexical item (see Figure 4B).

The merger of lexical items in models with a strong lexical bias
is related to the extra categories hypothesized by these models.
These merged lexical items consist largely of minimal pairs, words

in which all but one phoneme are identical, that are assigned by the
model to a single lexical item. The category shown in Figure 3F is
used in several merged lexical items, such as glad–glued, last–
lost, pin–pan–pen, snack–snake, and work–walk–woke–week. This
extra category captures the fact that the distribution of acoustic
values in these merged lexical items does not fit any of the existing
12 vowel categories, but instead has a broader distribution. Intui-
tively, these merged lexical items occur because there are many
more minimal pairs in English than one would expect if there were
no phonotactic constraints on phoneme sequences. This mismatch
between the observed and expected numbers of minimal pairs
becomes more statistically reliable as corpus size increases, and
thus simply adding more training data does not provide a solution
to this problem. We consider this issue in more detail in our
General Discussion.

In summary, the lexical-distributional model consistently out-
performed the distributional models in phonetic categorization
performance, indicating that words in the English lexicon contain
information that can improve phonetic category learning. With a
strong bias toward a smaller lexicon, the model showed high
lexical categorization performance but hypothesized extra pho-
netic categories to account for the high acoustic variability that
resulted from erroneously merging minimally different words.
With a weaker bias, the model’s lexical categorization perfor-
mance decreased because lexical items were split into multiple
categories, but this allowed the model to find the correct set of
categories.

The hard-coding of consonants in this simulation would ideally
be relaxed in a more realistic model. However, this hard-coding of
consonants is unlikely to have been critical to model success, as
our model was able to recover the correct set of vowel categories
in the majority of cases in Simulation 2, where no consonant
information was present. In addition, follow-up work by Elsner,
Goldwater, and Eisenstein (2012) has shown successful learning in
a similar model in which consonants can be perceived as mispro-
nunciations of other consonants.

Simulation 4: Reduced Speaker Variability

Simulations 2 and 3 used corpora in which acoustic values
reflected a large degree of variability, encompassing productions
by men, women, and children. Speaker normalization is a difficult
problem, but one that infants appear to solve quite early (Kuhl,

4 Despite these large changes in behavior from changes in the lexical
concentration parameter, performance was quite robust to changes in the
phonetic concentration parameter.

Table 5
Phonetic Categorization Scores for the Lexical-Distributional Model (L-D), Infinite Mixture
Model (IMM), and Gradient Descent Algorithm (GD) in Simulation 3

Variable

L-D

IMM GD$L # 1 $L # 10 $L # 100 $L # 1,000 $L # 10,000

Number of categories 14 13 13 12 12 6 6
F-score 0.719 0.756 0.755 0.745 0.709 0.448 0.483
Variation of information 2.085 1.803 1.790 1.765 1.959 2.949 2.699

Note. The true number of phonetic categories is 12 for each corpus.
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1979; but see Houston & Jusczyk, 2000). It may therefore be
possible for infants to filter out some of this within-category
variability when learning about phonetic categories. Overlap be-
tween categories may also be reduced if learners use additional
dimensions such as duration (Vallabha et al., 2007) or formant
trajectories (Hillenbrand et al., 1995). Simulation 4 demonstrates
that even when the degree of overlap between categories is re-
duced, a lexical-distributional learning strategy can enhance learn-
ing performance beyond what can be achieved through distribu-
tional learning.

We reduced within-category variability by creating our corpus
from formant values that were based only on men’s productions.
The training data were otherwise parallel to those of Simulation 3.

Method

Corpus preparation. Five thousand word tokens were sam-
pled from the same frequency counts used in Simulation 3. The
corpus for Simulation 4 contained 6,408 vowel tokens and 8,968
consonant tokens.

Production data by men only from Hillenbrand et al. (1995)
were used to compute empirical estimates of category means and
covariances in the two-dimensional space given by the first two
formant values. Vowel tokens in the corpus were sampled from
these Gaussian distributions.

Simulation parameters. Simulation parameters were identi-
cal to those used in Simulation 3.

Results and Discussion

As in Simulation 1, the distributional models benefited from
lowered amounts of speaker variability. However, using word-
level information provided an additional boost in performance (see
Figure 5). Quantitative phonetic categorization performance was
consistently better in the lexical-distributional model than in the
distributional models (see Figure 6A). Whereas the distributional
models underestimated the number of phonetic categories, the
lexical-distributional model recovered the correct number of cat-
egories with a weak prior bias toward a smaller lexicon (see Table
7). Lexical categorization performance showed a similar pattern to
that obtained in Simulation 3 (see Table 8). Extra phonetic cate-
gories found by models with a strong prior bias toward a small
lexicon were again related to merged lexical items found by those
models; the complete contents of one such category are listed in
Table 9. These results replicate the main results from Simulation 3
in a corpus that excludes a large amount of speaker variability.

General Discussion

In this article we investigated how higher level lexical knowl-
edge can contribute to lower level phonetic category learning by
creating a lexical-distributional model of simultaneous phonetic
category and word learning. Under this model, learners are not
assumed to have knowledge of a lexicon a priori, but are assumed
to begin learning a lexicon at the same time they are learning to
categorize individual speech sounds, allowing them to take into
account the distribution of sounds in words. Across several simu-
lations, phonetic categorization performance was shown to be

Table 6
Lexical Categorization Scores for the Lexical-Distributional Model (L-D) and Baseline Model
in Simulation 3

Variable

L-D

Baseline$L # 1 $L # 10 $L # 100 $L # 1,000 $L # 10,000

Number of categories 900/899 926/920 958/934 1,164/989 1,602/1,086 852
F-score 0.908/0.924 0.919/0.933 0.901/0.918 0.830/0.919 0.610/0.854 0.840
Variation of information 0.368/0.340 0.321/0.290 0.412/0.324 0.705/0.338 1.389/0.538 0.459

Note. The first number treats each cluster as separate, regardless of phonological form, and the second number
treats all clusters with identical phonological forms as belonging to a single lexical item. The true number of
lexical items is 1,019.
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Figure 4. Results of Simulation 3. (A) F-score and variation of informa-
tion (VI) measuring phonetic categorization performance by the gradient
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distributional model (L-D). (B) F-score and VI measuring lexical catego-
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significantly better in a lexical-distributional model than in distri-
butional models. These results provide support for the hypothesis
that the words infants segment from fluent speech can provide
useful constraints to guide their acquisition of phonetic categories,
as well as for the more general idea that complex systems incor-
porating multiple levels of structure are not best acquired by
focusing on each level in turn, but rather by considering multiple
levels simultaneously.

Here we situate the idea of interactive learning in a broader
context. We first examine the limitations of our modeling frame-
work and the extent to which those limitations affect the conclu-
sions we can draw. We then consider the role of minimal pairs and
discuss ways in which the model’s behavior in dealing with
minimal pairs can explain human behavior from artificial language
learning experiments. Finally, we discuss the implications of our
findings for theories of sound and word learning and for category
learning more generally.

Model Assumptions

Our lexical-distributional model was built to illustrate how
feedback from a developing word-form lexicon can improve the
robustness of phonetic category acquisition. A hierarchical non-
parametric Bayesian framework was chosen for implementing this
interactive model because it allows simultaneous learning of mul-
tiple layers of structure, with information from each layer affecting
learning in the other layer in a principled way. However, there
were several simplifications that we used when creating our corpus
that restrict the extent to which we can draw conclusions from
these results. One simplification, the lack of phonotactics, actually

led to decreased learning performance, and we address this issue in
the next section. Here we examine in detail the role of three other
simplifying assumptions: the use of only two acoustic dimensions,
the reliance on Gaussian distributions of sounds, and the omission
of contextually conditioned variability.

In constructing our corpora we assumed that learners attend to
only two acoustic dimensions, corresponding to the first and sec-
ond formants, when learning vowel categories. Real speech input
has rich acoustic cues, and vowels have been shown to differ
reliably along dimensions such as duration (Vallabha et al., 2007)
and formant trajectories (Hillenbrand, Clark, & Nearey, 2001). In
limiting ourselves to two dimensions we may have overestimated
the difficulty of the learning problem. Vowel categories exhibit
substantial overlap when viewed in two dimensions, but additional
dimensions may lead to greater separation between categories.
Given that our lexical-distributional learning algorithm works well
on just two acoustic dimensions, it is likely that the same strategy
would succeed when additional informative dimensions are taken
into consideration. However, distributional learning algorithms
may also produce better results when given richer cues that help
separate overlapping categories. At this point our results should
not be taken as evidence that distributional learning is impossible,
but rather that an interactive learning strategy can improve the
learning outcome on categories that pose a challenge for distribu-
tional learning. Both distributional learning and interactive learn-
ing, as described in Appendices A and B, can be implemented for
arbitrary numbers of dimensions, and this will allow the issue of
the number of relevant dimensions to be examined in detail in
future work.
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Figure 6. Results of Simulation 4. (A) F-score and variation of informa-
tion (VI) measuring phonetic categorization performance by the gradient
descent algorithm (GD), infinite mixture model (IMM), and lexical-
distributional model (L-D). (B) F-score and VI measuring lexical catego-
rization performance by the baseline model and lexical-distributional mod-
el. Solid lines treat each cluster in the lexicon as its own lexical item,
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single lexical item.
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Figure 5. Results of Simulation 4. Ellipses delimit the area corresponding
to 90% of vowel tokens for Gaussian categories computed from men’s
production data in Hillenbrand et al. (1995; A) and recovered in Simulation
4 by the lexical-distributional model with $L # 10,000 (B), the infinite
mixture model (C), and the gradient descent algorithm (D).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

764 FELDMAN, GRIFFITHS, GOLDWATER, AND MORGAN



A second simplifying assumption present in our models and
corpora was that sounds fall into Gaussian distributions along the
relevant phonetic dimensions. Although this same assumption has
been made in previous models of phonetic category acquisition
(McMurray et al., 2009; Vallabha et al., 2007), it is not likely to be
true in real speech data. Gaussian mixture models have shown
substantial difficulty in cases where they were trained directly on
acoustic vowel measurements (de Boer & Kuhl, 2003; Dillon et al.,
2013). The fact that acoustic values in our corpora were sampled
directly from Gaussian distributions is likely to have improved
learning performance in all three models. Because it affected all
three models equally, this simplification should not have affected
the comparison across models, but in future work it will be
important to replicate these results with actual acoustic values
from speech corpora.

More importantly, if real speech data exhibit non-Gaussian
distributions of sounds and learners eventually acquire knowledge
of these distributions, then learning algorithms need to be extended
to consider non-Gaussian distributions in their hypothesis space.
Vallabha et al. (2007) proposed one potential method by which
models might learn non-Gaussian categories, and Gaussian as-
sumptions have also been relaxed within the framework of neural
network models of phonetic learning (Behnke, 1998; Gauthier,
Shi, & Xu, 2007). The extent to which such proposals can be
integrated within a hierarchical learning framework remains an
interesting question for future research. One possibility would be
to incorporate more flexible function learning algorithms (e.g.,
Griffiths, Lucas, Williams, & Kalish, 2009), but relaxing the
Gaussian assumption makes the search space of hypotheses con-
siderably larger, presenting a challenge for probabilistic frame-
works. In this case having additional constraints from lexical
structure might become even more critical.

A third simplification was the lack of contextual variation in our
training corpora. In these corpora acoustic values for each sound
were sampled independently of surrounding sounds. This contrasts
with actual speech data, where acoustic characteristics of sounds
change in a context-dependent manner. These context-dependent
changes come from coarticulation with neighboring sounds (e.g.,
Hillenbrand et al., 2001) and phonological alternations (e.g., Pegg
& Werker, 1997) and lead to patterns of complementary distribu-
tion, in which distinct acoustic realizations of phonemes occur
consistently in distinct phonological contexts. This means that the
data given to our models satisfied the idea that sounds were
sampled independently of their context, but real speech data would
not satisfy this assumption. Similarly, schwa vowels were not
included in our simulations, as they are not present in the CMU
Pronouncing Dictionary and were also not included in the produc-
tion study by Hillenbrand et al. (1995). In real speech data these
would arise through phonological processes of vowel reduction. At
a minimum, the presence of schwas would require learners to
recover one additional vowel category, but one might also expect
learners to notice that reduced and unreduced vowels alternate
based on stress assignment.

Phonological processes that operate across word boundaries can
potentially cause sounds to appear interchangeably in the same set
of words, and this would allow learning to proceed through a
mechanism similar to our proposed model, as suggested by Martin,
Peperkamp, and Dupoux (2013). However, phonological processes
that affect primarily word-internal sounds pose a problem for our
model. A lexical-distributional learner hearing reliable differences
between sounds in different words would be likely to erroneously
assign coarticulatory variants of the same phoneme to different
categories, having no other mechanism to deal with context-
dependent variability. This means that omitting context-

Table 7
Phonetic Categorization Scores for the Lexical-Distributional Model (L-D), Infinite Mixture
Model (IMM), and Gradient Descent Algorithm (GD) in Simulation 4

Variable

L-D

IMM GD$L # 1 $L # 10 $L # 100 $L # 1,000 $L # 10,000

Number of categories 17 16 14 13 12 11 8
F-score 0.851 0.870 0.883 0.888 0.868 0.675 0.715
Variation of information 1.277 1.120 0.951 0.826 0.906 1.760 1.516

Note. The true number of phonetic categories is 12.

Table 8
Lexical Categorization Scores for the Lexical-Distributional Model (L-D) and Baseline Model
in Simulation 4

Variable

L-D

Baseline$L # 1 $L # 10 $L # 100 $L # 1,000 $L # 10,000

Number of categories 901/901 933/931 978/957 1,117/1,002 1,502/1,057 840
F-score 0.978/0.978 0.980/0.980 0.948/0.983 0.898/0.973 0.668/0.959 0.873
Variation of information 0.179/0.179 0.158/0.157 0.219/0.116 0.448/0.142 1.105/0.204 0.430

Note. The first number treats each cluster as separate, regardless of phonological form, and the second number
treats all clusters with identical phonological forms as belonging to a single lexical item. The true number of
lexical items is 1,019.
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conditioned variability from the corpus is likely to have benefited
the lexical-distributional model. In contrast, it is not obvious that
the presence or absence of contextually conditioned variability
would affect learning performance in a distributional learning
model. Because of this, it is not clear which type of model would
perform better on training data that incorporate contextually con-
ditioned variability.

The lexical-distributional model’s predicted difficulty with co-
articulation and allophony points to an inherent confound in lan-
guage input. Lexical structure, which we have shown to be useful
for separating overlapping categories, is confounded with context-
dependent phonological variability. Consistent acoustic differ-
ences across words can arise either because the words contain
different sounds or because the words contain the same sound in
different phonological environments. The lexical-distributional
model only considers one of these potential causes for systematic
acoustic variability across words.

Dillon et al. (2013) have begun to address this problem of
contextually conditioned variability, proposing a generative frame-
work in which a phoneme’s pronunciation varies depending on the
identities of neighboring sounds. They analyzed this learning prob-
lem mathematically and built a model in which phonemes are
represented as context-dependent mixtures of Gaussians. Their
model showed promising learning performance when trained on
formant values measured from vowel productions. Although their
model has not yet been mathematically combined with ours, it fits
nicely into the theoretical framework of interactive lexical-

distributional learning. White et al. (2008) have shown that infants
can detect transitional probability patterns that reflect phonological
alternations at 8 months of age, during the same period when they
are segmenting words and learning about phonetic categories.
These data suggest that in addition to segmenting and categorizing
words, young infants are sensitive to dependence of pronunciation
on phonological context, and are learning all three aspects of
linguistic structure simultaneously.

These considerations emphasize the fact that this model pro-
vides only a starting point for characterizing how children learn
sounds and words. Several issues need to be addressed before the
model can be applied to realistic corpus data, the most important
of which is adding a mechanism to account for contextually
conditioned variability. Nevertheless, interactive learning across
different layers of linguistic structure is likely to remain a key
component even as the model is scaled up to deal with more
realistic corpus data.

The Role of Minimal Pairs

Phonetic analyses, such as distributional learning, identify
sound categories by analyzing the clustering of these sounds
according to their acoustic properties. In contrast, phonological
analyses concern the distributions of sounds with respect to the
sound contexts in which they occur (Chomsky & Halle, 1968;
Jakobson & Halle, 1956; Trubetzkoy, 1939). As we have shown
here, distributional phonetic analyses may be inadequate for ac-
quisition of overlapping phonetic categories. The interactive
lexical-distributional learning model that we have proposed in-
stead is similar to the types of phonological analyses used in
theoretical linguistics in that it takes into account the context in
which sounds appear. However, our model’s predictions diverge in
interesting ways from the inferences that are typically drawn by
theoretical linguists on the basis of contextual patterns.

One key phenomenon exploited in phonological analyses is the
existence of minimal pairs, which serve as evidence that two
superficially similar sounds are actually members of different
categories. For example, bad and bed constitute a minimal pair,
two distinct words that differ from each other only by a single
phoneme. A linguist analyzing English, knowing that these are
different words, can infer that /æ/ and /ε/ are functionally different
sounds in the language. In our model, minimal pairs are treated in
the opposite way. The model, having no access to word meanings,
mistakenly interprets items from minimal pairs as tokens of the
same word. These mistakes in lexical categorization lead to mis-
takes in phonetic category learning, as the wide acoustic variability
across tokens in merged lexical items lead the model to hypothe-
size extra phonetic categories with a high degree of acoustic
variability. That is, the lexical-distributional model misinterprets
minimal pairs like bad and bed as different tokens of the same
word, and as a consequence, it mistakenly creates an extra cate-
gory that can accommodate acoustic values corresponding to both
/æ/ and /ε/.

Although linguists use minimal pairs to identify sound contrasts,
young learners may not use minimal-pair-based strategies on a
large scale in acquiring their first language. Minimal pair analyses
crucially rely on learners’ knowledge that the words have different
meanings. If meanings are not known, learners can interpret
similar-sounding acoustic tokens such as bad and bed as tokens of

Table 9
Contents of One of the Supercategories Found by a Model With
a Strong Bias Toward a Smaller Lexicon ($L # 10)

bat, bit, boat
bean, been, bone
bedroom
bicycle
break, broke
checking
danny, dinner, donna
dirty
every
figure
fit, foot
grape, group
happy, hippo
hats, hurts
maple
playing
polka
real, roll
seesaw
tents
tissues
tomatoes
wake, week, work
walks, weeks
way, were, whoa
wind, wound

Note The sounds identified as belonging to the supercategory are high-
lighted in bold. Multiple orthographic forms are listed next to each other if
tokens of that lexical item correspond to more than one word. Many of
these lexical items are minimal pairs that the model mistakenly categorizes
together.
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the same word. The role of minimal pairs in phonetic category
acquisition therefore critically depends on the extent to which
young infants have access to associations between form and mean-
ing. Children do appear to know some minimal pairs at a young
age, but may not have sufficient vocabulary knowledge to support
large-scale minimal-pair-based learning, making it unlikely that
early sound category acquisition relies primarily on information
from minimal pairs (Charles-Luce & Luce, 1990, 1995; but see
Bergelson & Swingley, 2012; Coady & Aslin, 2003; Dollaghan,
1994). Instead, a good deal of recent theoretical, empirical, and
computational work has demonstrated that nonminimal pairs might
provide cues for phonetic learning during language acquisition
(Feldman, Myers, White, Griffiths, & Morgan, 2013; Martin et al.,
2013; Swingley, 2009; Swingley & Aslin, 2007; Thiessen, 2007,
2011; Thiessen & Pavlik, 2013).

If infants were using a minimal-pair-based strategy for acquiring
sound categories, we should expect to find consistent evidence that
pairings of words and objects are helpful for separating similar
sound categories. Although some facilitation from word–object
pairings has been shown for 9-month-old infants (Yeung &
Werker, 2009), the opposite has been found in experiments that
use the switch task (Stager & Werker, 1997). In this task, infants
are habituated to one or more word–object pairings; during test the
pairings are changed so that familiar objects are paired with novel
labels. Success on the task is indicated by dishabituation to novel
pairings, as indicated by longer looking times. Stager and Werker
(1997) found that 14-month-old infants fail to notice when mini-
mally different object labels bih and dih are switched. This pattern
has been replicated with other types of contrasts, such as a voicing
contrast, a place contrast, and a two-feature voicing and place
contrast (Pater, Stager, & Werker, 2004). Infants succeed in dis-
criminating the same labels when no potential referents are given
(Stager & Werker, 1997), when the referential context is made
clear to them (Fennell & Waxman, 2010), or when the test para-
digm is simplified (Yoshida, Fennell, Swingley, & Werker, 2009),
suggesting that task difficulties are masking their sensitivity to
phonetic detail.

Critically, children’s poor performance in the switch task ap-
pears only in minimal pair contexts: Fourteen-month-olds succeed
at the task with the easily distinguishable labels lif and neem
(Werker, Cohen, Lloyd, Casasola, & Stager, 1998). It thus pro-
vides a method for identifying which type of familiarization stim-
uli best supports children’s ability to distinguish between words.
Thiessen (2007) used the switch task to specifically investigate the
effects of word context on children’s use of phonetic contrasts. He
replicated the basic finding, showing that 15-month-old infants fail
to notice when minimal pair object labels (in this case, daw and
taw) are switched. He then added two additional object–label
pairings to the habituation phase: either dawbow and tawgoo or
dawgoo and tawgoo. Infants who heard the words dawbow and
tawgoo as additional object labels during habituation discriminated
between daw and taw during test, but this facilitation did not occur
when the additional object labels were dawgoo and tawgoo. These
results suggest that facilitation was related to the degree of differ-
ence between the two extra familiarized words. The same quali-
tative pattern has been found with syllable-final consonant con-
trasts as well (Thiessen & Yee, 2010).

The facilitation observed in nonminimal pair contexts is not
specific to the switch task, but has been found in other experimen-

tal paradigms as well. Feldman et al. (2013) obtained similar
results with adults in a nonreferential task. In their experiment,
sounds ranging along a vowel continuum from tah to taw were
embedded in pseudowords guta and lita. One group of participants
heard all tah and taw sounds interchangeably in both words,
whereas the other group heard the tah half of the continuum
consistently in one word and the taw half of the continuum
consistently in the other word. Participants who heard tah and taw
in different word contexts were more likely to assign these stimuli
to different categories at the end of the experiment than partici-
pants who heard the sounds interchangeably. Words without ref-
erents similarly help 15-month-old infants perform better on the
switch task (Thiessen, 2011) and lead to better sound differentia-
tion by 8-month-old infants (Feldman et al., 2013). These findings
extend Thiessen’s (2007) findings to novel paradigms, contrasts,
and age groups, suggesting that the results are not tied to a specific
laboratory task but instead reflect general principles of sound
category learning. The acquisition and use of sound contrasts is
facilitated when the sounds are heard in distinct lexical contexts.

Results from these experiments are opposite of what would be
predicted if learners were using minimal pairs as their primary
basis for acquiring phonemes. Minimal pairs like dawgoo and
tawgoo or gutah and gutaw do not facilitate distinctions between
sounds, whereas nonminimal pairs like dawbow and tawgoo or
gutah and litaw do facilitate these distinctions. This pattern instead
suggests that learners are attending to acoustic differences between
the words in which sounds appear. When two sounds appear
consistently in distinct lexical contexts, they are likely to represent
different categories, whereas if the sounds appear interchangeably
in the same set of lexical contexts, they are more likely to belong
to the same phonetic category. Reliance on word-level information
has been incorporated into Thiessen and Pavlik’s (2013) model as
an a priori assumption, but our model predicts that this behavior
arises as a simple consequence of simultaneous learning of pho-
netic categories and lexical items. Here we illustrate how our
model can explain data from this type of experimental setting,
using a simple synthetic data set to show that learners’ behavior in
these experiments falls directly out of our model.

We mimic the experimental stimuli from Feldman et al. (2013)
using four phonetic categories labeled A, B, C, and D, shown in
Figure 7A. The category means are located at &5, &1, 1, and 5
along an arbitrary phonetic dimension, and all four categories have
a variance of 1. Because the means of Categories B and C are so
close together, being separated by only 2 standard deviations, the
overall distribution of tokens in these two categories is unimodal.
Categories B and C play the role of the similar sounds in our
simulations, and Categories A and D are used to create the differ-
ent lexical contexts.

Two simple corpora were constructed, one corresponding to
each experimental condition. Both corpora contained the same set
of 1,600 phonetic values, consisting of 400 tokens drawn randomly
from each of the four Gaussian phonetic categories. The corpora
differed from each other in the distribution of these phonetic
values across lexical items. The lexicon of the first corpus con-
tained no disambiguating information about Categories B and C. It
was generated from four lexical items, with identities AB, AC,
DB, and DC. Each lexical item was repeated 200 times in the
corpus for a total of 800 word tokens. In this corpus, Categories B
and C appeared only in minimal pair contexts, since both AB and
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AC, as well as both DB and DC, were words. The second corpus
contained disambiguating information about Categories B and C.
This corpus was identical to the first except that the acoustic values
representing the phonemes B and C of words AC and DB were
swapped, converting these words into AB and DC, respectively.
Thus, the second corpus contained only two lexical items, AB and
DC, and there were now 400 tokens of each word. Categories B
and C did not appear in minimal pair contexts, as there was a word
AB but no word AC, and there was a word DC but no word DB.
We refer to the first corpus as the minimal pair corpus and the
second as the informative corpus.

Simulations used parameters $C # $L # 1, m0 # 0, %0 # 0.001,
and S0 # 0.001. The distributional model was trained on the 1,600
acoustic values. Distributional information correctly separated out
Categories A and D, but it was insufficient to distinguish Catego-
ries B and C from each other (see Figure 7B). The lexical-
distributional model was trained separately on each of the two
corpora. As shown in Figure 7C, the model merged Categories B
and C when trained on the minimal pair corpus. Merging the two
categories allowed the learner to condense AB and AC into a
single lexical item, and the same happened for DB and DC.
Because the distribution of these sounds in lexical items was
identical, lexical information could not help separate the catego-
ries. In contrast, the lexical-distributional model was able to use
the information contained in the lexicon in the informative corpus
to successfully disambiguate Categories B and C (see Figure 7D).
This occurred because the model could categorize words AB and
DC as different lexical items simply by recognizing the difference
between Categories A and D, and could use those lexical classi-
fications to notice small phonetic differences between the second
phonemes in these lexical items.

These patterns parallel the experimental results described above.
When similar sounds are heard in different word contexts, they are
more likely to be assigned to different categories. Minimal pairs
may be useful when a learner knows that two similar sounding
tokens have different referents, but they pose a problem in this
model because the model hypothesizes that similar sounding to-
kens represent the same word. The resemblance between human

and model behavior suggests that participants’ reliance on word-
level information in these experiments can be explained through an
interactive learning strategy in which participants simultaneously
learn to categorize both sounds and words.

The close resemblance between model behavior and human data
raises the possibility that the model’s trouble with minimal pairs
reflects a real difficulty that learners face during phonetic category
acquisition. That is, human learners might sometimes misinterpret
members of minimal pairs as tokens of the same word. This
resembles an account given by Sebastián-Gallés and Bosch (2009)
to explain patterns of sound category acquisition in Spanish–
Catalan bilinguals. Infants raised in Spanish–Catalan bilingual
environments temporarily lose the ability to discriminate [o] and
[u] around 8 months of age, despite the fact that these sounds are
contrastive in both Spanish and Catalan. Sebastián-Gallés and
Bosch suggested that these infants may be confused by the large
number of cognates between the two languages. They gave the
example of the word boat, pronounced /barko/ in Spanish and
/barku/ in Catalan, to illustrate the type of evidence that could
cause such confusion. If learners have not yet entirely succeeded in
separating the two languages, hearing a high number of such
cognates could lead them to erroneously conflate [o] and [u].

Although this type of explanation might play a role in explain-
ing some aspects of learners’ developmental trajectories, and al-
though learners may not rely heavily on minimal pairs for distin-
guishing similar phonemes, there are also several reasons to think
that minimal pairs do not pose a significant problem in most
phonetic learning situations. The problem of minimal pairs arises
in our model because of a simplifying assumption: Our model
incorporates no phonotactic regularities into its lexicon. The Eng-
lish lexicon contains more minimal pairs than would be expected
on the basis of this assumption of no phonotactics. For example,
counting the number of pairs of distinct phonemic forms in the
CHILDES parental frequency count (Li & Shirai, 2000) that differ
by exactly one phoneme yields 29,767 minimal pairs. To explore
the extent of the mismatch between these corpus values and our
model’s assumptions, we created a series of artificial lexicons that
matched the actual distribution over word lengths, in which pho-
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Figure 7. Simple synthetic data with two overlapping categories, demonstrating the treatment of minimal pairs.
Data are shown as generated (A), recovered by the distributional model (B), recovered by the lexical-
distributional model from a minimal pair corpus (C), and recovered by the lexical-distributional model from a
corpus without minimal pairs (D).
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neme sequences were constrained by observed phoneme frequen-
cies but not by any phonotactics. On average, these lexicons
contained 9,199 minimal pairs, a substantially lower number than
are actually present in the corpus.

It is important to note that simply adding more training data
does not solve the lexical-distributional model’s problem with
minimal pairs. Using larger training corpora actually makes the
problem worse, because the difference between the predicted and
observed number of minimal pairs becomes more statistically
reliable as corpus size increases. Instead, improving learning per-
formance requires that the learner’s assumptions match the char-
acteristics of the linguistic input.

The lack of phonotactics was a problem for our model, but it
may not be a problem for young infants. Infants appear to have
knowledge of phonotactics by 9 months (Jusczyk, Luce, &
Charles-Luce, 1994) and perhaps even as early as 6 months (Mo-
lina & Morgan, 2011). Knowledge of phonotactics can improve
performance by assigning higher probability to phoneme se-
quences that occur frequently in the lexicon, raising the probability
of generating the same consonant frame more than once. Crucially,
phonotactic constraints appear to be acquired in parallel with
sound and word categories, suggesting that infants do not make the
same simplifying assumption regarding phonotactics as was pres-
ent in our model.

Other types of information are also available to help infants
separate similar sounding words. For example, semantic informa-
tion about words can potentially help infants separate minimal
pairs in their lexicon. Although most mappings between words and
objects are thought to be learned later in development (e.g.,
Werker et al., 1998; Woodward, Markman, & Fitzsimmons, 1994),
9-month-old infants can use co-occurrences between sounds and
objects to constrain phonetic category learning (Yeung & Werker,
2009). Recent findings also suggest that word–object mappings
may be available to infants earlier than was previously believed
(Bergelson & Swingley, 2012). This early knowledge might give
learners a way to separate very common sets of minimal pairs,
perhaps even supporting something parallel to the improved per-
formance that has been observed in the switch task with familiar
words in older infants (Fennell & Werker, 2003). Finally, if infants
are sensitive to phrase-level information, they may be able to use
the phrases to separate acoustically similar words, parallel to the
way in which they can use words to separate acoustically similar
sounds. That is, hearing bed and bad in distinct sentential contexts
can provide evidence that these are tokens of different words.
These considerations suggest that a number of strategies are po-
tentially available to infants for avoiding the challenges posed by
minimal pairs, and that more realistic models of acquisition would
not necessarily face the problem encountered by our model.

Learning a Prior Distribution Over Lexical Items

Lexical-distributional learning differs from many previously
proposed statistical learning algorithms in that it is based on a
hierarchical model. Hierarchical models allow simultaneous learn-
ing of specific items (e.g., the pronunciations of individual words
in the lexicon) and information about general characteristics of
items (e.g., the pronunciations of phonetic categories that tend to
occur in a variety of words). General knowledge that constrains
lower levels of learning is often referred to as overhypotheses

(Colunga & Smith, 2005; N. Goodman, 1955), and in our model
knowledge of phonetic categories constitutes a type of Bayesian
overhypothesis (Kemp, Perfors, & Tenenbaum, 2007; Perfors,
Tenenbaum, & Wonnacott, 2010). Knowledge of phonetic catego-
ries benefits learners by allowing them to predict what sort of
variability a new lexical item is likely to exhibit on the basis of
only a few acoustic tokens. This shifts the focus of learning to the
word level: Knowledge of sounds is nothing more than a type of
general knowledge about words.

Defining phonetic categories as a prior distribution over the
forms of lexical items means that learners can obtain an estimate
of phonetic category parameters by computing statistics over the
items in their hypothesized lexicon. Similar approaches to phonetic
learning have recently been proposed in the automatic speech
recognition community as well (Jansen & Church, 2011). This
contrasts with distributional learning models in which statistics are
computed directly over tokens from the corpus, but it parallels
approaches in other linguistic domains. For example, the idea of
computing statistics over the lexicon has been proposed for unsu-
pervised learning of phonotactics (Hayes & Wilson, 2008) and
morphology (Goldwater, Griffiths, & Johnson, 2006; Goldwater et
al., 2011). Computing statistics over lexical items is appropriate
when the domain to be learned is a component of the prior
distribution over lexical items, and this is a reasonable assumption
in all of these cases.

The prior distribution over lexical items is likely to have many
components, with phonetic categories, phonotactics, and morphol-
ogy all providing constraints on lexical structure. These provide
potential ways to extend the model in future work. For example,
our model mistakenly merged lexical items when trained on the
English lexicon, and languages with richer morphological structure
would likely present an even greater challenge in this respect. In
Spanish, verb conjugation patterns like quiero ‘want-1sg’ and
quiere ‘want-3sg’ produce sets of minimal pairs that all share the
same set of vowels. Similar patterns are found in languages with
templatic morphology, such as Arabic and Hebrew. One potential
solution would be to directly model morphology as part of the
prior distribution over words (cf. M. Johnson et al., 2007). Al-
though it is not yet clear at what point this type of pattern becomes
available to infants, as sensitivity to morphological patterns has
been found only at 11 months in French-learning infants (Marquis
& Shi, 2009) and not until 15–18 months in English-learning
infants (Mintz, 2004; Santelmann & Jusczyk, 1998; Soderstrom,
White, Conwell, & Morgan, 2007), it is possible that morphology
also interacts with phonetic learning.

Finally, it is possible that children need to learn the structure, as
well as the content, of the prior distribution over lexical items. For
example, learners might infer that lexical items are composed of
sequences of phonetic categories by examining the words in
their developing lexicon. Our implementation of the lexical-
distributional model assumes the form of this prior distribution
is known in advance, but our broader theoretical framework is
potentially compatible with the idea that representations such as
phonetic categories emerge during development, as a result of
learners observing statistical regularities across lexical items. Re-
search has begun to formalize structure learning problems using
Bayesian methods (e.g., Kemp & Tenenbaum, 2008), and it will be
interesting to apply those methods to investigate which additional
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aspects of the prior distribution over lexical items might be learned
from linguistic input.

Relation to Process Level Models

Our model addresses Marr’s (1982) computational level and
embodies the idea of rational analysis (Anderson, 1990), providing
a formal analysis of the computational problem faced by learners
and the statistical solution to that problem. The assumption behind
this type of modeling strategy is that infants are solving a statistical
inference problem when they acquire language, and that identify-
ing which problem they are solving can give us clues to the types
of strategies that are likely to be used. We analyzed the learning
problem that arises when sounds are organized into words, com-
paring this to the learning problem that arises when sounds are
uttered in isolation, and our more realistic assumptions led to better
model performance. This is one example of how formal analyses
can lead to principled hypotheses about learning strategies that
might be used during language acquisition.

However, because it is specified at the computational level, our
model does not directly address the question of which representa-
tions and processes are involved in interactive learning of sounds
and words. With regard to processes, using a Bayesian framework
limits our ability to take into account the time course of develop-
ment. Our use of a Gibbs sampler in this article is certainly not
meant to suggest that children use a batch learning algorithm when
acquiring language. Furthermore, our simulations reflect the learn-
ing outcome that can be achieved by an ideal learner at a single
time point using a given effective corpus size, but it is not clear
how this maps onto any particular time point in children’s devel-
opment.

One way to look at learning trajectories across development
might be to examine the learning outcome in response to varying
amounts of training data, running several simulations that are
trained on different corpus sizes. This approach has been used in
previous work (e.g., Kemp & Tenenbaum, 2008), yielding predic-
tions about qualitative changes in learners’ representations. This
strategy is appealing in that it requires no additional machinery
aside from the Bayesian model itself. However, it also has poten-
tial drawbacks, in that it necessarily assumes that learners are
optimal at every time during development and also gives no
account of how learners update their beliefs from one time point to
the next. For these reasons, it is worth considering ways in which
Bayesian computations might be implemented in an incremental
fashion.

There is a growing literature on process-level models that might
support Bayesian computations (Kwiatkowski, Goldwater, Zett-
lemoyer, & Steedman, 2012; Pearl, Goldwater, & Steyvers, 2011;
Sanborn et al., 2010; Shi, Griffiths, Feldman, & Sanborn, 2010).
Learners encounter speech as it unfolds in time, and thus it seems
likely that they would use an incremental algorithm to update their
beliefs about linguistic structure. One possible algorithm is particle
filtering (Sanborn et al., 2010), a sequential Monte Carlo method
in which new data points are assigned to categories probabilisti-
cally as they occur. In the lexical-distributional model, learners
would categorize each sound and word based on their current
beliefs about the phonetic category inventory and lexicon. Those
category assignments would then contribute to the prior distribu-
tion for future assignments. However, learners would not have an

opportunity to revise category assignments for previous sounds.
This algorithm is guaranteed to converge to the posterior distribu-
tion over category assignments if learners keep track of many
hypothesized category assignments for each sound, but it loses this
guarantee if learners are limited in the number of hypotheses they
store in memory. A second type of incremental algorithm, local
maximum a posteriori, or MAP (Anderson, 1990; Pearl et al.,
2011; Sanborn et al., 2010), is similar to a particle filter in many
ways, but each new data point is assigned deterministically to the
category that has highest posterior probability given the previous
assignments. Although this algorithm does not have convergence
guarantees, empirically it outperforms even a more powerful batch
sampling algorithm in some cases, such as word segmentation
under a unigram language model (Goldwater et al., 2009; Pearl et
al., 2011). A third variant of incremental learning is online varia-
tional inference (Kwiatkowski et al., 2012), which, instead of
sampling category assignments or assigning points to the highest
probability category, tracks the expectations (under the posterior)
of the category assignments. One way to view this is as if each data
point were partially assigned to several different categories, with
the amount of fractional assignment depending on each category’s
probability of having generated that data point. As in the previous
two algorithms, category assignments are made as each data point
is observed and cannot be revised afterward; thus all three of these
algorithms can potentially provide incremental implementations of
Bayesian computations. A final possibility, explored by Pearl et al.
(2011), is that learners do revise old hypotheses, but to a lower
degree than would be predicted by batch learning algorithms. All
of these proposals have shown promising performance in compar-
ison to batch learning algorithms, and they provide frameworks for
beginning to explore implementations for interactive learning that
are incremental, computationally tractable, and robust.

It is also important to consider representations that might sup-
port the computations described in this article. Although it is
possible that listeners do store and update parameters associated
with probability distributions, our use of explicit probability dis-
tributions to represent phonetic categories is not meant to be taken
as a theoretical claim. One alternative proposal that has received a
good deal of attention is that knowledge of words and sounds is
represented through stored exemplars (K. Johnson, 1997; Pierre-
humbert, 2001). Listeners appear to retain detailed knowledge of
speaker characteristics in word recognition tasks (Goldinger,
1996), and sounds in frequent words are more prone to reduction
or lenition than sounds in infrequent words (Bybee & McClelland,
2005; Gahl, 2008). This suggests that phonetic knowledge is stored
separately for each word and is also sensitive to nonlinguistic
characteristics of situations in which those words appear. Exem-
plar models explain these findings by proposing that listeners’
perception uses stored examples of individual sounds, words, or
utterances they have heard, rather than using a stored representa-
tion that abstracts away from those examples.

Exemplar models are often viewed as being incompatible with
traditional ideas about sound category structure (e.g., Port, 2007).
Whereas most theories assume that learners extract generalizations
about sounds and words, in exemplar models these generalizations
are unnecessary during learning and are epiphenomenal during
perception. This poses a potential challenge for the assumption in
our lexical-distributional model that learners extract sound and
word categories based on distributions in the input. However,
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although it is clear that exemplar models are inconsistent with
representations that correspond to sound and word categories, it is
less straightforward to determine whether they are consistent with
the existence of categories at Marr’s (1982) computational level of
analysis. Probabilistic computations can often be approximated
using samples from the relevant distributions, and because of this,
exemplar models can be used to approximate at least some types of
Bayesian models. If exemplar models can be used to approximate
lexical-distributional learning, then they can be thought of as
simply another way of implementing our computational level
model.

It is not yet clear whether exemplar models can provide a
plausible approximation to our lexical-distributional learning
model. Ashby and Alfonso-Reese (1995) demonstrated that for
categorization tasks, exemplar models provide a way of carrying
out nonparametric density estimation. Learners are assumed to
store labeled exemplars belonging to a category. They can then
assign new exemplars to categories on the basis of the similarity
between those new exemplars and previously encountered exem-
plars. This can provide a way to implement the computation of
category assignments given in Equation 2, but it falls short of
providing an implementation for our entire model because it re-
quires the presence of labeled exemplars.

Shi et al. (2010) proposed a second way in which exemplar
models can approximate Bayesian computations: If stored exem-
plars correspond to samples from the prior distribution over hy-
potheses, then importance sampling can be used to estimate the
posterior distribution. This simply requires that exemplars be
weighted according to a similarity function that is proportional to
the likelihood. It is not immediately obvious how to apply this
method to our lexical-distributional model, as each hypothesis in
our model consists of a phonetic category inventory, a lexicon, and
a set of category labels for each sound and word in the corpus.
Learners would need to obtain a set of exemplars representing
samples from the prior distribution over these complex hypotheses,
and there is not an obvious way that they could obtain such a
sample through experience. Despite the fact that our model does
not meet the requirements for these specific parallels between
Bayesian and exemplar models, it is possible that future work will
reveal a framework in which something similar to an exemplar
model can be used to implement interactive learning of sounds and
words.

Thiessen and Pavlik (2013) provide a starting point for thinking
about how this might work, proposing an exemplar-based frame-
work for implementing distributional learning. Although their
model is unable to capture the idea that sounds constitute higher
level knowledge that can be generalized across words (McQueen,
Cutler, & Norris, 2006; White & Aslin, 2011; but see Thiessen &
Yee, 2010), they do account for data from Thiessen (2007) by
treating word contexts as acoustic dimensions. It will be interesting
to explore how this type of framework can be extended to repre-
sent knowledge at multiple layers of generality, and to what extent
this type of hierarchical structure can emerge from the input that
children receive.

Category Learning in Language and Other Domains

Our model is built around sound and word learning, but it is
potentially applicable to other domains in language and cognition

as well. When acquiring language, infants need to learn multiple
layers of linguistic structure. Sounds are organized into words,
words combine to form sentences, and sentences convey meaning
in real-world contexts. Investigations of statistical learning often
consider each domain in isolation or assume that acquisition pro-
ceeds sequentially (e.g., Christiansen, Onnis, & Hockema, 2009;
Graf Estes et al., 2007; Saffran & Wilson, 2003). Contrary to this
assumption, our simulations suggest that statistical learning is most
effective when dependencies between domains are taken into ac-
count. Recent models of language acquisition have begun inves-
tigating the outcome of interactive learning in a variety of linguis-
tic domains, such as word boundaries and word meanings (Jones,
Johnson, & Frank, 2010), word meanings and syntactic structure
(Maurits, Perfors, & Navarro, 2009), or syntactic and semantic
structure (Kwiatkowski et al., 2012), each time with promising
results. It is important to identify interactions between levels of
linguistic structure because they can qualitatively change how we
conceptualize the learning problem. For example, if infants are
distributional learners, then research should be focused on deter-
mining how they solve the problem of overlapping categories, but
if they are interactive learners, we might instead focus on questions
about how they deal with similar sounding words.

More broadly, one might hypothesize that perceptual categories
in general correspond to higher level knowledge that helps people
learn relationships among objects in the world. For example,
Kemp, Shafto, Berke, and Tenenbaum (2007) proposed that per-
ceptual similarity between objects could be used to detect whether
those objects were likely to participate in similar types of causal
relationships. In N. D. Goodman, Mansinghka, and Tenenbaum
(2007), perceptual categories were inferred directly based on their
role in causal structure, and Kemp, Tenenbaum, Griffiths,
Yamada, and Ueda (2006) used a similar approach to learn cate-
gories from relational data. Lake, Salakhutdinov, Gross, and Te-
nenbaum (2011) proposed a hierarchical framework for learning to
recognize novel handwritten characters, and object recognition in
general has benefited from an approach in which the prior distri-
bution is defined in terms of reusable parts (e.g., Sudderth, Tor-
ralba, Freeman, & Willsky, 2008). Other work has explored how
learning multiple categories simultaneously can affect the resulting
category representations (Canini & Griffiths, 2011; Canini et al.,
2010; Gureckis & Goldstone, 2008). In each of these cases, mem-
bers of each category shared some level of surface similarity, but
categories were also used as building blocks for various types of
higher level structures. Top-down information from these higher
level structures provided a cue that learners could use to recover
the underlying categories, supplementing the bottom-up similarity
structure. Combining information in this way is an optimal learn-
ing strategy for learners who live in a world with multiple layers
of structure.

Considering the interaction between different sources of infor-
mation becomes even more important as we go beyond the artifi-
cial stimuli typically used in studies of category learning. An
important set of constraints guiding human category learning
comes from explicit knowledge about the world. People are
strongly affected by this knowledge when learning new categories,
with categories that are consistent with prior knowledge being
easier to learn. However, the relevant knowledge is extremely
diverse, with experiments demonstrating the effects of intuitions
about the factors that influence the inflation of balloons (Pazzani,
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1991), the properties of different types of buildings (Heit & Bott,
2000), the definition of honesty (Wattenmaker et al., 1986), and
the properties of vehicles (Murphy & Allopenna, 1994). Only a
small number of computational models of knowledge effects in
category learning exist (Heit & Bott, 2000; Rehder & Murphy,
2003), and these models treat prior knowledge as a fixed quantity
that is exploited by the learner. Understanding how people build
complex theories about the world around them at the same time as
learning the concepts on which those theories are built is a major
challenge for accounts of human category learning, and a place
where the insights obtained by studying language acquisition may
be relevant.

Conclusion

Infants learn multiple levels of linguistic structure, and it is often
implicitly assumed that these levels of structure are acquired
sequentially. This article has instead investigated the optimal
learning outcome in an interactive system using a nonparametric
Bayesian framework that permits simultaneous learning at multi-
ple levels. Our results demonstrate that information from words
can lead to more robust learning of phonetic categories, providing
one example of how such interaction between domains might help
make the learning problem more tractable.

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ:
Erlbaum.

Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability
density estimation. Journal of Mathematical Psychology, 39, 216–233.
doi:10.1006/jmps.1995.1021

Behnke, K. (1998). The acquisition of phonetic categories in young infants:
A self-organising artificial neural network approach. Nijmegen, the
Netherlands: Max Planck Institute for Psycholinguistics.

Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants
know the meanings of many common nouns. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 109,
3253–3258. doi:10.1073/pnas.1113380109

Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005).
Mommy and me: Familiar names help launch babies into speech-stream
segmentation. Psychological Science, 16, 298–304. doi:10.1111/j.0956-
7976.2005.01531.x

Bybee, J., & McClelland, J. L. (2005). Alternatives to the combinatorial
paradigm of linguistic theory based on domain general principles of
human cognition. Linguistic Review, 22, 381–410.

Canini, K. R., & Griffiths, T. L. (2011). A nonparametric Bayesian model
of multi-level category learning. In W. Burgard & D. Roth (Eds.),
Proceedings of the 25th AAAI Conference on Artificial Intelligence (pp.
307–312). Palo Alto, CA: Association for the Advancement of Artificial
Intelligence.

Canini, K. R., Shashkov, M. M., & Griffiths, T. L. (2010). Modeling
transfer learning in human categorization with the hierarchical Dirichlet
process. In J. Fürnkranz & T. Joachims (Eds.), Proceedings of the 27th
International Conference on Machine Learning (pp. 151–158). Madi-
son, WI: Omnipress.

Charles-Luce, J., & Luce, P. A. (1990). Similarity neighborhoods of words
in young children’s lexicons. Journal of Child Language, 17, 205–215.
doi:10.1017/S0305000900013180

Charles-Luce, J., & Luce, P. A. (1995). An examination of similarity
neighborhoods in young children’s receptive vocabularies. Journal of
Child Language, 22, 727–735. doi:10.1017/S0305000900010023

Chomsky, N., & Halle, M. (1968). The sound pattern of English. New
York, NY: Harper & Row.

Christiansen, M. H., Onnis, L., & Hockema, S. A. (2009). The secret is in
the sound: From unsegmented speech to lexical categories. Developmen-
tal Science, 12, 388–395. doi:10.1111/j.1467-7687.2009.00824.x

Coady, J. A., & Aslin, R. N. (2003). Phonological neighbourhoods in the
developing lexicon. Journal of Child Language, 30, 441–469. doi:
10.1017/S0305000903005579

Colunga, E., & Smith, L. B. (2005). From the lexicon to expectations about
kinds: A role for associative learning. Psychological Review, 112, 347–
382. doi:10.1037/0033-295X.112.2.347
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Appendix A

Infinite Mixture Model

We use xi to represent individual sounds in the corpus and zi to
denote a category label for an individual sound xi. This category
label zi indexes directly into the phonetic category inventory. N
represents the total number of sounds in the corpus, and c denotes
the index of a phonetic category in the phonetic category inven-
tory. Parameters !c and "c represent the mean and covariance of
category c and are assumed to be drawn from a prior distribution
GC, a normal inverse Wishart distribution that plays the role of the
base distribution in the Dirichlet process. Using this notation, the
generative model for our distributional model is

GC :

%c & IW"&0, S0#, c " 1..'

!c & N'm0,
%c

&0
(, c " 1..'

zi & DP"(C, GC#, i " 1..N

xi & N"!zi
, %zi#, i " 1..N

Inference in the distributional model uses a collapsed Gibbs sam-
pler, integrating over the means !c and covariances "c of phonetic
categories. Minus symbols in subscripts are used to denote the
exclusion of particular components; for example, z&i is used to
denote all category labels except zi. Each sound xi is given a new
category assignment zi according to Bayes’ rule, based on other
sounds’ current category assignments z&i:

p"zi " c$xi, z#i# ) p"xi$zi " c, z#i#p"zi " c$z#i#. (A1)

The prior distribution p(zi # c|z&i) is defined by the Dirichlet
process to be

nc

!
c

nc * (C

for existing categories

(C

!
c

nc * (C

for a new category,
(A2)
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where nc is the number of times the phonetic category c has been
used previously in the corpus. The likelihood p(xi|zi # c, z&i) is
computed by integrating over all possible means and covariance
matrices for the category to obtain a multivariate t-distribution,

+'&c * 1

2 (
+'&c * 1 # d

2 (),Sc'&c * 1

&c
()#

1
2

- '1 * "xi # mc#T$Sc'&c * 1

&c
(%#1

"xi # mc#(#
&c*1

2
,

(A3)

where mc, %c, and Sc are the parameters of the normal inverse
Wishart distribution that describes the posterior distribution over

means and covariances after observing the nc sounds currently
assigned to category c. These are defined as

mc "
&0

&0 * nc
m0 *

nc

&0 * nc
y!

(A4)

&c " &0 * nc (A5)

Sc " S0 * !
y

"y # y!#"y # y!#T

*
&0nc

&0 * nc
"y! # m0#"y! # m0#T,

(A6)

where nc gives the number of speech sound tokens currently
assigned to category c, y are the acoustic values of individual
tokens already assigned to the category, and y! represents the mean
of those acoustic values.

Appendix B

Lexical-Distributional Model

Let !c and "c be the mean and covariance of phonetic category
c, lk " "lk1,. . .,lknk

# be a lexical item composed of a sequence of nk

phonetic categories, and wi " "wi1,. . .,winzi
# be a word token

composed of a sequence of acoustic values. The phonetic category
assignment for slot j of lexical item k is denoted as lkj, and its value
indexes into the phonetic category inventory. Similarly, the lexical
item corresponding to word token i is denoted zi, and its value
indexes into the lexicon. Note that this is different from the
variable zi from the infinite mixture model, which denotes the
phonetic category label for a single speech sound token.

The model assumes that phonetic category parameters are drawn from
a distribution GC. For each category in the phonetic category inventory,
a mean !c and covariance "c are drawn from a prior distribution over
category parameters. The frequency of each category in the lexicon is
determined based on the concentration parameter $C. This creates the
phonetic category inventory. Lexical items are drawn from a distribution
GL such that for each item in the lexicon lk, the length of the lexical item
is drawn from a geometric distribution, favoring shorter lexical items. The
phonetic categories for each phoneme slot lkj are drawn from the phonetic
category inventory, introducing a statistical dependency between the
lexicon and the phonetic categories in the language. Lexical frequencies
are chosen based on the concentration parameter $L. This process creates
a lexicon in which each lexical item has a length, a phonological form,
and a frequency. For each word token wi in the corpus, a lexical item zi

is drawn from the lexicon, and this determines the word type. Individual
sounds wij are sampled from the Gaussian phonetic categories contained
in that lexical item.

This generative model can be specified as follows:

GC :

%c & IW"&0, S0#, c " 1..'

!c & N'm0,
%c

&0
(, c " 1..'

GL :
nk & Geom"g#, k " 1..'

lkj & DP"(C, GC#, k " 1..', j " 1..nk

zi & DP"(L, GL#, i " 1..N

wij & N"!lzij
, %lzij#, i " 1..N, j " 1..nzi ,

where N(!, ") denotes a Gaussian distribution with mean ! and cova-
riance ", IW(%, S) denotes an inverse Wishart distribution with degrees of
freedom % and scale matrix S, and DP($, G0) denotes a Dirichlet process
with concentration parameter $ and base measure G0.

Presented with a corpus consisting of isolated word tokens, each
of which consists of a sequence of acoustic values,B1 a learner
needs to recover the lexicon and the phonetic category inventory of
the language that generated the corpus.

To recover samples from the posterior distribution of lexical and
phonetic assignments, we use a collapsed Gibbs sampling algo-
rithm, integrating out !c and "c. The algorithm involves two
sweeps, the first to sample category assignments for phonetic
category slots in the lexicon and the second to sample lexical
assignments for words in the corpus. The variables z and l repre-
sent the set of word assignments in the corpus and the set of
phonetic category assignments in the lexicon, respectively. The
variable w represents the set of all acoustic values in the corpus.

In the first sweep, each phonetic category assignment in the
lexicon is resampled according to its conditional probability given
all other current assignments. If we define wk as the set of words
wi such that zi # k, this conditional probability distribution can be
computed using Bayes’ rule as

p"lkj " c$wkj, z, w#kj, l#kj# )

p"wkj$lkj " c, z, w#kj, l#kj#p"lkj " c$z, w#kj, l#kj#. (B1)

B1 Because of the difficulty of identifying a set of phonetic dimensions
that applies to both vowels and consonants, consonants were represented
categorically in Simulations 3 and 4, and were thus assumed to be per-
ceived and categorized perfectly by the learner.

(Appendices continue)
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The prior distribution p(lkj # c|z, w&kj, l&kj) is defined by the
Dirichlet process to be

Nc

!
c

Nc * (C

for existing categories

(C

!
c

Nc * (C

for a new category,
(B2)

where Nc is the number of times the phonetic category c has been used
previously in the lexicon. The likelihood p(wkj|lkj # c, z, w&kj, l&kj) is
computed by integrating over all possible means and covariance
matrices for the category to obtain the posterior predictive distribution

+d'vc * n

2 ($Sc$
vc
2

+d'vc

2 (,
dn
2

n * vc

vc

d
2
)Sc * !

i"1

n

"wij # wkj#"wij # wkj#T

* ' nvc

n * vc
("wkj # mc#"wkj # mc#T)#

vc*n

2

(B3)

where n is the number of words in the set wk and mc, %c, and Sc are
computed according to Equations A4–A6. Note that Equation A3
is a special case of Equation 11 when n # 1.

The second sweep reassigns word tokens to lexical items ac-
cording to Bayes’ rule:

p"zi " k$wi, z#i, w#i, l# )

p"wi$zi " k, z#i, w#i, l#p"zi " k$z#i, w#i, l#. (B4)

The prior distribution p(zi # k|z&i, w&i, l) is again given by the
Dirichlet process as

Nk

!
k

Nk * (L

for existing lexical items

(L

!
k

Nk * (L

for a new lexical item,
(B5)

where Nk is the number of words in the corpus that have been
assigned to lexical item k. The likelihood p(wi|zi # k, z&i, w&i, l)
for an existing lexical item k is a product of the likelihoods of the
speech sounds from each unique category contained in the lexical
item, integrating over the parameters of the categories. If we define
wic to be the set of acoustic values in word wi for which lkj # c, this
likelihood is

p"wi$zi " k, z#i, w#i, l# " *
c

p"wic$zi " k, z#i, w#i, l#. (B6)

Each term p(wic|zi # k, z&i, w&i, l) can be computed using
Equation B3, replacing the set of acoustic values wkj with the set
of acoustic values wic.

To estimate the likelihood of a new lexical item, we use a set of
100 samples from the prior distribution, with the exception that if
the word i was previously the only word assigned to a lexical item,
that lexical item takes the place of one of the samples from the
prior (Neal, 2000). When sampling directly from the prior distri-
bution, each of these 100 samples would receive a pseudocount of
(L

100
. In practice, we sample only from the portion of the prior

distribution for which the likelihood is greater than 0. To correct
for this, we multiply the pseudocount of each sample by the prior
probability of obtaining a word length, syllable template, and set of
consonants matching word i.

(Appendices continue)
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Appendix C

Quantitative Measures

Two quantitative measures of model performance were com-
puted over clusterings of vowel tokens (for phonetic categoriza-
tion) and word tokens (for lexical categorization). The pairwise
F-score, defined as the harmonic mean of pairwise accuracy and
completeness, measures the extent to which pairs of tokens are
correctly assigned to the same category. It ranges between 0 and 1,
with higher scores indicating better performance. Variation of
information (VI; Meilă, 2007) is an information theoretic measure
of the difference between the model’s clustering and the true
clustering, with lower scores corresponding to better performance.
A third measure, the adjusted Rand index, gave results similar to
the F-score, and is thus omitted from the article.

To compute the pairwise F-score, pairs of tokens that were
correctly placed into the same category were counted as a hit; pairs
of tokens that were incorrectly assigned to different categories
when they should have been in the same category were counted as
a miss; and pairs of tokens that were incorrectly assigned to the
same category when they should have been in different categories
were counted as a false alarm. Accuracy (a) was defined as

hits

hits*false alarms
and completeness (c) was defined as

hits

hits*misses
. The F-score was computed by taking the harmonic

mean of accuracy and completeness, F "
2 ! a ! c

a*c
. Variation of

information (Meilă, 2007) was computed as VI(C, C=) # 2H(C, C=) &
H(C) & H(C=), where H is entropy and C and C= represent the true
clustering and the model clustering, respectively.

The model can assign the same phonemic form to multiple
lexical items, and it was unclear whether to count these as one or
two lexical categories when scoring the results. Thus, two versions
of each measure of lexical categorization performance were com-
puted for the lexical-distributional model, one that counted each
cluster found by the model as a separate lexical item and a second
in which any clusters with the same phonemic form were merged
into a single lexical item. In both cases, homophones were grouped
together in the evaluation standard so that the model would not be
penalized for clustering together tokens of words with identical
phonological forms such as they’re and there.
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