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Abstract

The perceptual magnet effect involves reduced discriminabil-
ity near prototypical vowel sounds in the native language. We
present a Bayesian model to explain why this reduced discrim-
inability might occur: it arises as a consequence of optimally
solving the statistical problem of perceiving speech sounds in
the presence of noise. In the optimal solution to this prob-
lem, listeners’ perception of speech sounds is biased toward
the means of phonetic categories because they use knowledge
of these categories to guide their inferences about speakers’
target productions. Simulations show that the predictions of
the model closely correspond to human data.
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It has long been known that categories influence percep-
tion, especially in the domain of speech sounds (Liberman,
Harris, Hoffman, & Griffith, 1957). Similar categorical ef-
fects have been described in other domains, including color
perception (Davidoff, Davies, & Roberson, 1999) and ar-
tificial categories of objects (Goldstone, Lippa, & Shiffrin,
2001). Despite widespread interest in this phenomenon, the
reasons and mechanisms behind the connection between cat-
egories and perception remain unclear.

Categorical perception, the extreme case in which subjects
can discriminate two speech sounds only when they belong
to different phonetic categories, has been observed primarily
for consonants. The role of phonetic categories in the percep-
tion of vowels has been more controversial. Fry, Abramson,
Eimas, and Liberman (1962) first noted that vowel perception
was much more continuous than consonant perception. More
recently, however, Kuhl and colleagues have found evidence
of poor discrimination near phonetic category prototypes, a
phenomenon they have called the perceptual magnet effect
based on the idea that native language prototypes pull neigh-
boring speech sounds toward them (Kuhl, Williams, Lacerda,
Stevens, & Lindblom, 1992; but see Lotto, Kluender, & Holt,
1998, for an alternative point of view). The effect has been
demonstrated in the English /i/ category (Iverson & Kuhl,
1995), the German /i/ category (Diesch, Iverson, Kettermann,
& Siebert, 1999), and the Swedish /y/ category (Kuhl et al.,
1992). Though the effect remains elusive in other English
vowels (Thyer, Hickson, & Dodd, 2000), language-specific
shrinking of perceptual space has also been shown near the
English /r/ and /l/ prototypes in English but not Japanese
speakers (Iverson & Kuhl, 1996; Iverson et al., 2003).

While it has been argued that the perceptual magnet effect
is a separate phenomenon from categorical perception (Iver-
son & Kuhl, 2000), most evidence for the phenomenon has
shown characteristics that are qualitatively similar to other

types of categorical effects: perceptual space is shrunk near
the centers of categories and expanded near category bound-
aries. An explanation for the perceptual magnet effect, then,
should account for both of these components while still al-
lowing for continuous vowel perception in which subjects can
discriminate within-category contrasts.

Previous computational models of the perceptual magnet
effect have attributed various roles to phonetic categories.
Guenther and Gjaja (1996) proposed a neural network model
in which shrinkage of perceptual space near category cen-
ters emerges through an unsupervised learning mechanism
trained on specific distributions of speech sounds, with cat-
egories playing no explicit role. Similarly, Damper and Har-
nad (2000) have argued based on neural models that categor-
ical perception is an emergent property of the stimulus con-
tinuum. At the other extreme, Lacerda (1995) has proposed
a model in which the perceptual magnet effect emerges as
a side-effect of a classification problem. The goal of listen-
ers is to classify sounds into phonetic categories; perception
involves retrieving a set of numerical values that reflect the
sound’s similarity to each phonetic category in a language.

In this paper we take a novel approach to modeling the per-
ceptual magnet effect. In the spirit of Marr (1982) and An-
derson (1990), we consider the abstract computational prob-
lem posed by speech perception and show that the percep-
tual magnet effect emerges as part of the optimal solution to
this problem. Specifically, we assume that listeners are op-
timally solving the problem of perceiving speech sounds in
the presence of noise. Listeners have knowledge of discrete
phonetic categories, but their goal in speech perception is to
extract phonetic detail in addition to category membership in
order to reconstruct coarticulatory and non-linguistic infor-
mation. This is a difficult problem for listeners because they
cannot hear the speaker’s target production directly. Instead,
they hear speech sounds that are similar to the speaker’s target
production but that have been altered through articulatory and
acoustic noise. We formalize this problem using Bayesian
statistics and show that the optimal statistical solution to this
problem produces the perceptual magnet effect.

The paper is organized as follows. In the next section, we
introduce our model of speech perception. The following sec-
tion explores the relationship between category membership,
perceptual bias, and perceptual distance, laying the back-
ground for simulations that provide a quantitative comparison
between the model’s behavior and empirical data. Finally, the
discussion revisits the model’s assumptions and draws paral-
lels to previous models of the perceptual magnet effect.
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Bayesian Model of Speech Perception
Our model sets up perception of speech sounds as a statis-
tical problem. The goal of listeners, in perceiving a speech
sound, is to reconstruct the acoustic detail of a speaker’s tar-
get production. They extract this detail using the informa-
tion that is available to them from the speech signal and their
prior knowledge of phonetic categories. Phonetic categories
are defined in this model as Gaussian distributions of speech
sounds; in producing a speech sound, speakers select a pho-
netic category and articulate a target production from that cat-
egory. Listeners hear a distorted version of this target produc-
tion due to articulatory and acoustic noise, approximated in
the model as Gaussian noise. In laying out the mathematics
of the model, we begin by examining the case of a hypotheti-
cal language with one phonetic category; we then move on to
the more complex case of multiple categories.

One Phonetic Category
When listeners perceive a speech sound, they can assume it
was generated by selecting a target production from a pho-
netic category and then generating a noisy speech sound
based on the target production. More formally, if phonetic
category c has mean µc and variance σ2

c , speakers generate
target production T from that phonetic category. Listeners
hear speech sound S through speech signal noise σ2

S. This
statistical model can be written as

T |c ∼ N(µc,σ2
c) (1)

S|T ∼ N(T,σ2
S) (2)

Listeners hear the speech sound S and know the structure and
location of phonetic categories in their native language; their
task is to infer the speaker’s target production T based on this
information.

Using the speech sound S as data and the structure of pho-
netic category c as a prior, listeners can use Bayes’ rule

p(T |S,c) ∝ p(S|T )p(T |c) (3)

to infer the speaker’s target production T . The likelihood
p(S|T ), given by the speech signal noise (Equation 2), assigns
highest probability to speech sound S; the prior p(T |c), given
by phonetic category structure (Equation 1), assigns highest
probability to the mean of the phonetic category. Since both
likelihood and prior are Gaussian, their combination yields
a posterior distribution that is a Gaussian whose mean falls
between the speech sound S and the mean µc of the phonetic
category. This posterior probability distribution can be sum-
marized by its mean (the expectation of T given S and c),
which is

E[T |S,c] =
σ2

cS+σ2
Sµc

σ2
c +σ2

S

(4)

The optimal guess at the speaker’s intended production, then,
is a weighted average of the speech sound heard and the mean
of the speech sound’s phonetic category, where the weights

are determined by the ratio of category variance to speech
signal noise.1

Equation 4 formalizes the idea of a perceptual magnet:
the term µc pulls the perception of speech sounds toward the
mean of the phonetic category, effectively shrinking percep-
tual space around the phonetic category. The resulting per-
ceptual pattern is shown in Figure 1 (a). Note that if there
is no uncertainty about category membership, perception of
speech sounds further from the category mean is more bi-
ased than perception of speech sounds closer to the category
mean. Consequently, all of perceptual space is shrunk to the
same degree. If listeners are certain that all sounds belong to
a single category, perceptual bias toward the category mean
causes all of perceptual space to shrink toward the center of
the category.

The analysis given above is the solution to a standard prob-
lem in Bayesian statistics (e.g., Gelman, Carlin, Stern, & Ru-
bin, 1995), but Huttenlocher, Hedges, and Vevea (2000) also
worked out the solution to an inference problem similar to this
in the domain of non-linguistic stimuli. They noted that sub-
jects’ responses in visual stimulus reproduction tasks are gen-
erally biased toward the mean of the set of stimuli in an exper-
iment and developed a model to account for that bias. Their
model of visual stimulus reproduction assumes that subjects
in an experiment form an implicit category consisting of all
the stimuli they have seen and that they use this implicit cat-
egory to correct for memory uncertainty when asked to re-
produce a stimulus. For a Gaussian category distribution and
Gaussian noise, the optimal way to correct for memory un-
certainty using this implicit category is to bias all responses
toward the mean value of the category, which in this case is
the mean value of the set of stimuli. The mathematical anal-
ysis of this problem is nearly identical to ours, reflecting the
similar structure of the two problems.

Multiple Phonetic Categories
The one-category case, while appropriate to explain the bias
caused by an implicit category of visual stimuli within an ex-
perimental setting, is not appropriate for describing natural
language. We therefore extend the model so that it applies to
the more realistic case of multiple phonetic categories. With
multiple categories, the probability that a particular category
generated a speech sound can be calculated using Bayes’ rule:

p(c|S) =
p(S|c)p(c)

∑c p(S|c)p(c)
(5)

where p(S|c) is computed by summing over all possible target
sounds, p(S|c) =

∫
p(S|T )p(T |c) dT , and p(c) reflects the

prior probability assigned to category c.
The probability that a particular category generated a

speech sound can be used in evaluating what the speaker’s tar-
get production might have been. In reconstructing the target,
listeners should take into account all the categories that could

1The expectation is optimal when the penalty for misidentifying
a speech sound increases with squared distance from the target.
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Figure 1: Predicted relationship between acoustic and perceptual space in the case of (a) one category and (b) two categories.

have produced the speech sound they heard, but they should
weight the influence of each category by the probability that
it produced the speech sound. To do this, they marginalize
over phonetic categories, so that

p(T |S) = Σc p(T |S,c)p(c|S) (6)

where p(T |S,c) is the posterior distribution over T computed
by assuming that it comes from category c, as in the single
category case analyzed above (Equation 3).

The posterior distribution on T given S is now a mixture
of Gaussians rather than a single Gaussian, but we can still
compute its mean. Restricting our analysis to the case of cat-
egories with equal variance, the expected value of T given S,
aggregating over all categories, is simply

E[T |S] =
σ2

c

σ2
c +σ2

S

S+
σ2

S

σ2
c +σ2

S

Σc p(c|S)µc (7)

The estimated value of T is thus a weighted average of speech
sound S and the means µc of all the phonetic categories that
might have produced S, where the contribution of µc is reg-
ulated by p(c|S). When listeners are certain of a speech
sound’s phonetic category, this reduces to Equation 4, and
perception of a speech sound S is biased toward the mean of
its phonetic category. However, a speech sound directly on
the border between two categories, with a high probability of
having been generated from either, is pulled simultaneously
toward both category means, each cancelling out the other’s
effect. Shrinkage of perceptual space is thus strongest in areas
of unambiguous speech sound categorization – the centers of
phonetic categories – and weakest at category borders. The
correspondence between acoustic and perceptual spaces for
the two-category case is shown in Figure 1 (b).

Characterizing Perceptual Warping
Our statistical analysis of the problem of speech perception
establishes a simple function mapping an acoustic stimulus,
S, to a percept of the intended speech sound, given by E[T |S].
In the case where multiple phonetic categories are present,
this mapping is given by Equation 7. In order to formally
analyze the qualitative behavior of the model, this section fo-
cuses on the relationship between three measures in the two-
category case: identification, the posterior probability of cat-
egory membership; displacement, the difference between the

actual and perceived stimulus; and warping, the degree of
shrinkage or expansion of perceptual space.

In the two-category case, under the assumptions outlined
above, the identification function has the form of a logistic
function. If both categories have equal prior probability, the
posterior probability of membership in a given category c1

can be written as

p(c1|S) =
1

1+ e−gS+b (8)

where g = µ1−µ2
σ2

c+σ2
S

and b = µ2
1−µ2

2
2(σ2

c+σ2
S)

. A logistic function of this

form is shown in Figure 2 (a). In areas of certain categoriza-
tion, the identification function is at either 1 or 0; a value of
0.5 indicates maximum uncertainty about category member-
ship.

Displacement involves a comparison between the location
of a speech sound in perceptual space E[T |S] and its location
in acoustic space S, where

E[T |S]−S =
σ2

S

σ2
c +σ2

S

(∑
c

p(c|S)µc −S) (9)

In the one-category case, this means the amount of displace-
ment is proportional to the distance between the speech sound
S and the mean µc of the phonetic category. As speech sounds
get farther away from the category mean, they are pulled pro-
portionately farther toward the center of the category. The
dashed lines in Figure 2 (b) show two cases of this. In the case
of multiple categories, the amount of displacement is propor-
tional to the distance between S and a weighted average of the
means of more than one phonetic category. This is shown in
the solid line, where ambiguous speech sounds are displaced
less than would be predicted in the one-category case because
of the competing influence of a second category mean.

Finally, perceptual warping can be characterized based on
the distance between two neighboring points in perceptual
space that are separated by a fixed step ∆S in acoustic space.
This quantity is reflected in the distance between neighbor-
ing points on the bottom layer of each diagram in Figure 1.
By the standard definition of the derivative as a limit, as ∆S
approaches zero this measure of perceptual warping corre-
sponds to the derivative of E[T |S] with respect to S. This
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Figure 2: Measures of (a) identification, (b) displacement, and (c) warping. Solid lines show the values when both categories
are considered; dotted lines show corresponding values in a hypothetical language with only a single category.

derivative is

dE[T |S]
dS

=
σ2

c

σ2
c +σ2

S

+
σ2

S

σ2
c +σ2

S
∑
c

µc
dp(c|S)

dS
(10)

where the last term is straightforward to compute, being the
derivative of the logistic function given in Equation 8.

When the derivative given in Equation 10 has a value
greater than one, perceptual space is expanded relative to
acoustic space; a value of less than one indicates shrinkage
of perceptual space. This equation demonstrates that distance
between two neighboring points in perceptual space is a lin-
ear function of the rate of change of p(c|S), the identification
function. The identification function is changing most rapidly
near category boundaries, in areas of highest uncertainty, re-
sulting in greater perceptual distances between neighboring
stimuli near the edges of phonetic categories. In the one cat-
egory case, shown by the dotted line in Figure 2 (c), the iden-
tification function is constant, so the warping function is al-
ways less than one and all of perceptual space is shrunk. The
two category case, shown by the solid line, includes a portion
of expanded perceptual space in the area where the identifi-
cation function is changing most rapidly.

Taken together, these three measures show that interaction
between neighboring phonetic categories produces a pattern
of perceptual warping in which speech sounds near a cate-
gory mean are extremely close together in perceptual space,
whereas speech sounds near the edges of a category are much
farther apart. This perceptual pattern results from a combina-
tion of two factors, both of which were suggested by Liber-
man et al. (1957) in reference to categorical perception. The
first is acquired similarity within categories due to perceptual
bias toward category means; the second is acquired distinc-
tiveness between categories due to the presence of multiple
categories. Under the assumptions of this model, then, the
optimal solution for a rational perceiver is to shrink percep-
tual space near phonetic category centers and expand percep-
tual space near category boundaries. The pattern of warping
found in the perceptual magnet effect falls neatly out of an
analysis in which listeners use knowledge about the distri-
bution of speech sounds in phonetic categories to optimally
infer phonetic detail in the presence of speech signal noise.

Simulations

The formal results presented in the previous section estab-
lish that the qualitative predictions of our Bayesian model are
broadly compatible with the warping associated with the per-
ceptual magnet effect. In this section, we present a quantita-
tive test of the model, examining whether a reasonable set of
parameters can be found to match empirical data.

Some of the most detailed quantitative evidence for the per-
ceptual magnet effect comes from a study by Iverson and
Kuhl (1995), who used signal detection theory and multidi-
mensional scaling to map perceptual distances near prototyp-
ical and non-prototypical /i/ vowels. They tested adults’ dis-
crimination of 13 stimuli along a single vector in F1-F2 space,
ranging from F1 of 197 Hz and F2 of 2489 Hz (classified as
/i/) to F1 of 429 Hz and F2 of 1925 Hz (classified as /e/) in 30-
mel2 intervals. Their multidimensional scaling results, shown
in Figure 3, were used to test the model quantitatively.

Parameters in the model were based as much as possible
on empirical measures in order to reduce the number of free
parameters. The parameters that needed to be specified were
µ/i/, the /i/ category mean; µ/e/ , the /e/ category mean; σ2

c ,
the category variance; and σ2

S, the speech signal noise.
Subjects’ goodness ratings from Iverson and Kuhl (1995)

were first used to specify µ/i/. The mean of the /e/ category,
µ/e/, and the sum of the variances, σ2

c + σ2
S, were calculated

based on the gain and bias of a logistic function that was fit to
the phoneme identification curves from Lotto et al. (1998).3

The ratio between the category variance σ2
c and the speech

signal noise σ2
S was the only remaining free parameter, and

its value was chosen in order to maximize the fit to Iverson
and Kuhl (1995)’s multidimensional scaling data.

A direct comparison was made by calculating the expecta-
tion E[T |S] for each of the 13 stimuli according to Equation
7 and then determining the distance in mels between the ex-
pected values of neighboring stimuli. These distances were
compared with the distances between stimuli in the multi-

2The mel frequency scale equates psychophysical distance.
3Because the stimuli in the MDS task were presented to subjects

in all possible pairings, we averaged the identification curves ob-
tained with prototype and nonprototype referents to produce a single
intermediate identification curve.
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dimensional scaling solution. Since multidimensional scal-
ing gives relative, and not absolute, distances between stim-
uli, this comparison was evaluated based on whether mel
distances in the model were proportional to distances found
through multidimensional scaling. As shown in Figure 3, the
model yielded an extremely close fit to the empirical data,
with interstimulus distances that were proportional to those
found in multidimensional scaling (r=0.97). This simulation
used the following parameters:

µ/i/: F1=224 Hz, F2=2,413 Hz
µ/e/: F1=423 Hz, F2=1,936 Hz
σ2

c : 5,873 (σc = 77 mels)
σ2

S: 4,443 (σS = 67 mels)
The fit obtained between the simulation and the empirical

data is extremely close; however, model parameters derived
in this simulation are meant to serve only as a first approxima-
tion of the actual parameters in vowel perception. Because of
the variability that has been found in subjects’ goodness rat-
ings of speech stimuli, it is likely that these parameters are
somewhat off from their actual values, and it is also possible
that the parameters vary between subjects.

To understand the behavior of the model under various pa-
rameter combinations, we varied the prior probability, cate-
gory variance, and speech signal noise independently in simu-
lations. Varying the prior probability of the categories causes
a shift in the discriminative boundary between the /i/ and /e/
categories. The boundary is shifted toward the category with
lower prior probability, so that a larger region of acoustic
space between the two categories is classified as belonging
to the category with higher prior probability. This sort of
boundary shift has been documented based on lexical context
(Ganong, 1980): in contexts where one phoneme would form

a lexical item and the other would not, phoneme boundaries
are shifted toward the phoneme that makes the non-word.

Manipulating category variance yields extreme categorical
perception in categories with low variance and perception that
is less categorical in categories with high variance. When the
variance is so high that the distribution of speech sounds in
the two categories is unimodal, the model predicts that all
speech sounds are biased toward a point between the two cat-
egory means.

Finally, manipulating the speech signal noise produces a
complex effect. Whereas adding low levels of noise makes
perception more categorical, there comes a point where noise
is too high to determine which category produced a speech
sound, blurring the boundary between categories.

In this section, we have demonstrated through quantitative
simulations based on a reasonable set of parameters that the
model can reproduce Iverson and Kuhl (1995)’s quantitative
multidimensional scaling data for the /i/ and /e/ categories.
In addition, we have shown that the model captures similar
patterns of perception using a wide range of parameter val-
ues and that parameter changes cause predictable shifts in
boundary location and in the degree to which perception is
categorical. Our model thus provides quantitative, as well as
qualitative, predictions of the perceptual magnet effect.

Discussion

This paper has described a Bayesian model of speech per-
ception in which listeners reconstruct the acoustic detail of a
speaker’s target production based on the speech sound they
hear and their prior knowledge of phonetic categories. Un-
certainty in the speech signal causes listeners to infer a target
production that is closer to the mean of a phonetic category
than the speech sound they actually heard. Assuming a lan-
guage has multiple phonetic categories, listeners must first in-
fer which category produced a speech sound and can then use
that information to guide their inference of acoustic detail.

A basic assumption in the model is that listeners have
knowledge of phonetic categories but are trying to infer pho-
netic detail. This assumption contrasts with previous models
but is consistent with empirical data showing that listeners
are sensitive to sub-phonemic detail at both neural and be-
havioral levels (Pisoni & Tash, 1974; Blumstein, Myers, &
Rissman, 2005). Phonetic detail provides coarticulatory in-
formation that can help listeners identify upcoming words,
and data have suggested that listeners use this coarticulatory
information on-line in lexical recognition tasks (Gow, 2001).
Though one could contend that listeners’ ultimate goal is to
categorize speech sounds into discrete phonemes, they seem
to attend to phonetic detail in the speech signal as well.

The model brings three different analyses of categorical ef-
fects together under a single framework. The first piece of this
model relates to Huttenlocher et al. (2000)’s account of cate-
gory effects on visual stimulus reproduction. In their model,
when category structure was present in the stimuli, subjects
used this structure to compensate for uncertainty in memory
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traces. We argue that speech perception involves solving the
same computational problem as these visual tasks. Paral-
lel to inferring a stimulus value while correcting for mem-
ory uncertainty, listeners must infer the phonetic detail of a
speaker’s target production while correcting for uncertainty
in the speech signal.

In addition to drawing parallels between computational
problems in speech perception and other areas of cogni-
tion, this Bayesian model synthesizes two opposing expla-
nations for the perceptual magnet effect. One account in-
volves speech sound prototypes that act as perceptual mag-
nets, pulling the perception of speech sounds toward them
(Kuhl et al., 1992). The idea of a perceptual magnet is for-
malized in Equation 4, where speech sounds are perceived
based on the mean of the category that produced them. The
second account ties the perception of speech sounds to the
task of inferring category membership (Lacerda, 1995). In
line with this, the Bayesian solution to the problem of speech
perception with multiple categories (Equation 7) necessitates
that listeners first infer category membership. However, in
contrast to Lacerda (1995)’s model, which assumes that lis-
teners are perceiving only category membership, the present
model predicts that listeners perceive speech sounds in terms
of speakers’ intended target productions, a continuous vari-
able that depends only partly on category membership. The
Bayesian model presented in this paper therefore synthe-
sizes these two previous proposals into a single framework
in which the perceptual magnet effect arises through the in-
teraction between shrinkage of perceptual space toward cate-
gory centers and enhanced discrimination between categories
through optimal inference of category membership.

The results presented in this paper establish that the per-
ceptual magnet effect can be explained as the consequence of
optimally solving the statistical problem of speech perception
using knowledge about the structure of phonetic categories.
We are currently conducting empirical tests of the predictions
of this model under various parameter manipulations, aiming
to differentiate between it and competing models. In addi-
tion to providing a basic account of the perceptual magnet
effect, this model might be able to shed light on parallels be-
tween vowel and consonant perception. It has been noted that
within-category discrimination of vowels is easier than that
of consonants, and this model suggests that these differences
might be related to a higher noise component in consonant
perception or a higher amount of meaningful variability in
vowel categories. Finally, since the basic assumptions be-
hind the model are not specific to the structure of speech,
our Bayesian approach may also provide the foundation for
understanding effects of categories on perception more gen-
erally, a possibility that we hope to explore in future work.
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