
A neural architecture for selective attention to speech features

Nika Jurov1,2, William Idsardi1, Naomi H. Feldman1,2

1 Department of Linguistics, University of Maryland, USA
2 UMIACS, University of Maryland, USA

njurov@umd.edu, idsardi@umd.edu, nhf@umd.edu

Abstract
Speech perception is complex and demands constant adaptations
to the speaker and the environment (i.e. noisy speech, accent,
etc.). To adapt, the listener relies on one speech feature more
than another. This cognitive mechanism is called selective at-
tention. We present a model that captures the idea of selective
attention: we show that this dynamic adaptation process can be
captured in a neural architecture by using a multiple encoder
beta variational auto encoder (β-ME-VAE), which is based on
rate distortion theory. This model implements the idea that opti-
mal feature weighting looks different under different listening
conditions and provides insight into how listeners can adapt
their listening strategy on a moment-to-moment basis, even in
listening situations they haven’t experienced before.
Index Terms: speech perception, cognitive modeling, computa-
tional psycholinguistics, rate distortion theory

1. Introduction
Speech perception is an active process of extracting information
from a highly complex and variable signal. When mapping the
speech signal to phonetic categories, such as [p] or [b], listeners
can make use of information that is spread across several aspects
of the speech signal (features) [1]. For example, one commonly
used feature that distinguishes [p] and [b] in English is voice
onset time (VOT), which denotes a difference between the burst
and the start of voicing. Another feature signaling the [p] and
[b] distinction is pitch (F0). In English, [b] has shorter VOT and
lower F0, whereas English [p] has longer VOT and higher F0.
In typical listening situations, listeners rely more on VOT than
on F0 [2]. Previous models have aimed to capture this unequal
reliance on different speech features as optimal inference under
uncertainty, and have hypothesized that long-term input statistics
determine feature weighting [3, 4].

However, recent data suggest that listeners are extremely
flexible and fast at reweighting features when encountering new
speakers and new listening conditions [2, 5, 6, 7, 8, 9, 10, 11,
12, 13]. Specifically, [2] showed that listeners primarily rely on
VOT in a clear listening condition, but they rely primarily on F0
when VOT is obscured (noisy listening condition). In addition,
after hearing miscorrelated features (i.e. VOT typical for [b] and
F0 typical for [p]), listeners rely even more on their preferred
feature (VOT in the clear condition, F0 in the noisy condition)
and ignore the information given by the other feature.

Previous models cannot easily capture this pattern because
they do not take into account that speech can be momentarily
perturbed. Any flexibility in feature weighting in those models
requires training a separate model for each listening condition.
This clearly cannot account for cases where listeners quickly
adapt to miscorrelated features (a set of input statistics that they

have not previously experienced).
In this paper, we introduce a neural architecture and show

that it can facilitate rapid changes in perceptual feature weighting.
Our model instantiates the idea of selective attention [14], a
flexible cognitive process prioritizing one feature over another
that enables listeners to adapt to the speaker and situation without
conscious control. Mathematically, our model is based on rate
distortion theory (RDT) [15], implemented as a multiple encoder
beta variational autoencoder (ME-β-VAE). We show how speech
features can be weighted flexibly on a moment to moment basis
within this neural architecture without needing to retrain the
network for each individual situation. This flexible weighting
allows the model to switch between different conditions and
provides insight into how listeners can achieve the fast, flexible
reweighting that has been observed empirically.

2. A model based on rate distortion theory
We propose a new neural architecture that can allow listeners to
flexibly shift their attention. Our model is based on an idea from
information theory known as rate distortion theory (RDT).

RDT is a probabilistic model of a system (often also called
a channel) trying to maximize its performance with capacity
constrained information processing [16, 15, 17]. Its objective is
to minimize perceptual errors. Therefore, the encoding channel
extracts as much information as possible that is relevant to the
task: in this case, reconstructing the acoustics of the speech
signal and mapping the speech signal to a category, like [p] or [b].
RDT assumes that the constrained capacity is the source of what
is often called internal or sensory noise. The information that
passes through the channel is chosen so that task performance is
maximized, subject to the constraints on channel capacity.

Our neural architecture is based on the β-VAE [18], which
has been shown mathematically to implement the RDT frame-
work of efficient information processing [19]. The β-VAE is a
probabilistic deep neural network model trained to optimize the
loss containing the rate (forcing the encoder to learn meaningful
latent representations) and the reconstruction terms (forcing the
model to reconstruct the input as best possible):

L(θ, ϕ;xi,yi) =

− βDKL(qϕ(zi|xi)||pθ(zi)) +MSE(xi,yi) (1)

where bolded symbols are vectors and acronyms denote specific
losses. In particular, x is the input, y is the output, z is the
latent information found at the end of the encoder. Losses: DKL

denotes KL divergence, MSE denotes mean square error. θ, ϕ
are parameters of the probability distributions; q(), p() denote
the probability distributions, where q() is an approximation of
p(). β is a parameter scaling the KL divergence proportionally
to the MSE loss.
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Our β-VAE incorporates several advances relative to the
original architecture from [18]. First, properties of the optimal
channel in RDT depend on the loss function, and the channel
would attend more to a specific part of the input if deviations
in reconstructing that part of the input were penalized more in
its loss function. This idea has been implemented in research
on visual attentional allocation [20] and we adopt it here to
simulate asymmetric feature weighting (i.e., reliance on one
primary feature). Specifically, we obtain this by scaling each
dimension of the reconstruction loss (MSE) with a predefined
asymmetric weight which we call ω, so that the second term in
the loss function becomes MSE(xij ,yij )ωij . Setting a high
value of ω for the reconstruction of a particular feature, such
as VOT, leads the network to prioritize that feature in its latent
encoding.

Second, following [21], we add a supervised categorization
model, enabling category mapping based on the features. This
allows us to extract the information in such a way that it best
serves the mapping of the input to one of the categories. Any
information not contributing to the categorization is as such less
important to send through the channel. The categorization model
is trained jointly with the β-VAE on cross-binary (BCE) entropy
loss (see full loss in Equation 2): the loss compares the output
of the categorization model given latent information zi with the
ground truth binary label li (either [p] or [b]) fed to the model
during training: BCE(cat(zij ), li).

Third, our model has multiple encoders as seen in [22]. Each
encoder extracts different feature information. This is achieved
with feature weighting as in [20]: we force each encoder-decoder
combination to have higher reconstruction accuracy on one of
the dimensions — VOT for encoder 1, and F0 for encoder 2
— and inversely, lower reconstruction accuracy on the other.
This unequal accuracy reconstruction makes the model learn
different information with each encoder. This models internal
manipulations that we hypothesize listeners to be performing
on the input when optimizing their perceptual system based on
experience.

In other words, we show how listeners can build a perceptual
system that allows them to allocate their focus more to one fea-
ture rather than another, given their needs in any given listening
situation. The joint training of encoders is achieved by getting
KL and MSE losses for each encoder and then averaging over
them (see full loss in Equation 2). The model is jointly optimized

Figure 1: Multiple encoder β-VAE training - Schematic archi-
tecture of training of multiple encoder β-VAE with an added
categorization model. The number of encoders can be extended.
Each encoder encodes the same input. A sample zi from each en-
coder Ei is decoded separately in training. The category model
receives a random proportion of data from each encoder.

Figure 2: Feature weighting (single β-VAE) and training data -
A: Modeled decision boundary of a single channel β-VAE that is
forced to reconstruct VOT better than F0. It cannot adapt to the
moment-to-moment statistics unless retrained. B: Visualization
of training data used for all simulations. For categorization,
data in the lower left corner was labeled [b], and data in the
upper right corner was labeled [p].

to extract features, weight them by how reliable they are in the
moment and map them to a category:

L(θ, ϕ;xi,yi) =

1

n

n∑

j=1

(
− βDKL(qϕj (zij |xij )||pθ(zij ))

+MSE(xij ,yij )ωij

)

+BCE(cat(
n∑

j=1

γjzij ), li) (2)

Each training step consists of each encoder encoding the same
input x. The last layer of each encoder is a sampling step where
the latent variable zi is obtained. Each zi is pushed through
the decoder to obtain the reconstructed input, which is in turn
used to calculate the loss function. γj is a randomly sampled
weight from [0, 1] interval, such that

∑n
j=1 γj = 1. γj defines

the proportion of the information taken from each encoder, such
that their combination is pushed through the category model
(cat(

∑n
j=1 γjzij ), li)).

To motivate our architecture choice we also show results
on a single channel β-VAE, that is one encoder one decoder
architecture. Its loss is as stated in equation 2 with 1 encoder
(n = 1). This model is able to asymmetrically extract a single
feature at the expense of another, but does not have the power of
adaptation like the β-ME-VAE does.

3. Model training and testing
We implemented a scenario with 2 features (VOT and F0) to
model listeners’ ability to use different primary features in dif-
ferent listning conditions, as in [2], where listeners used VOT
in clear listening conditions and F0 in noisy conditions and also
increased their reliance on the primary feature when hearing a
reversed correlation between the two features. That experiment
tested comparable scenarios on both consonants and vowels, but
since experiments on vowels show qualitatively the same results
as consonants, we simulate only the consonants. We show that
the preference between the two features is flexible given the
speaker and/or environment. This preference can be visualized
as a decision boundary or a line on a 2D plot that shows which of
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Figure 3: Flexible adaptation in perception - Modeled decision
boundaries due to different combinations of encoders. Encoder
1 is focused on VOT, encoder 2 is focused on F0. Depending on
how much weight we give to each encoder, we arrive to different
decision boundaries. A: all of the decision is based on F0. B:
all of the decision is based on VOT. C: 80% of the information
is coming from encoder 2, 20% from encoder 1. D: 80% of the
information is coming from encoder 1, 20% from encoder 2.

the features (each on one of the axes) contributes more towards
the categorization of the stimulus (Figure 3).

Our experiments are conducted with Python version 3.8.12
and TensorFlow version 2.8.0 on macOS 13.2.1 system with a
single GPU. The architecture and the parameters used for the
simulations were the following: there were two encoders (one
for the β-VAE), each consisting of two 2D convolutional layers,
followed by a dense layer (2000 units) and a layer extracting the
mean and the log variance (each 500 units) of the latent variable
z, all having rectified linear activation functions. The model
was trained with Adagrad optimizer with learning rate 0.001,
batch size 32 and β of 0.0025. To make each encoder focus on
one feature, the ω was set to 0.999 for the upweighted feature
(VOT in encoder 1 and F0 in encoder 2) and to 0.001 for the
downweighted feature (F0 in encoder 1 and VOT in encoder 2).
The decoder was a one layer model with 2 units and a linear acti-
vation function. The category model consisted of two layers, the
first with 100 units with rectified linear activation functions and
the second with 2 units and sigmoid activation functions. This
overparametrized architecture was already used by [20], except
that here we increase the number of encoders. All parameters
were chosen to give good performance but no attempt was made
to systematically optimize them, as we were more interested in
qualitative characteristics of the model. The code is available at:
https://github.com/n-ika/adapt2noise.

The input to all simulations was 2-dimensional data, where
the first value denotes VOT and the second F0. These values
simulate those as reported in the 7-step continuum in [2]: VOT
varied as 5-ms steps between 5ms and 35ms and F0 varied as
20-Hz steps between 200Hz to 320Hz. However, because of
numeric differences between the scales (one between 5-35, the
other between 200-320), the actual numbers simulating these
two scales were both set to the same scale, centered around 0.

In total, there were 180,000 data points. Each data point was
created by sampling from a normal distribution with variance 1
and a mean either -3, -2, or -1 for [b] stimuli; or a mean 1, 2, or
3 for [p] stimuli. This is because shorter VOT and lower F0 are
typical of [b] and longer VOT and higher F0 are typical of [p].
There were no values sampled around 0, just like in [2], since this
is a value between typical [p] and [b] VOT/F0 values (i.e. not
characteristic of either of the two categories). For visualization
of the training data, see Figure 2.

During test time for the β-ME-VAE, the latent variables (z1
and z2) are joined with a different ratio, depending on how much
information is wanted from each encoder:

∑

j

γj × Ej(xj) (3)

Where γj denotes the ratio of information from each encoder
Ej() and

∑n
j γj = 1. For example, to simulate total reliance

on VOT, only the information coming from encoder encoding
mostly VOT is taken and none from the encoder encoding mostly
F0.

4. Experiments
Speech perception based on feature weighting has been de-
scribed by prior research to be active and thus attention guided
[23, 14, 24]. Listeners have a preferred feature they focus on
more which does not seem to be a result of perceptual distances
themselves [25]. Our first simulation illustrates one way in
which listeners may learn to attend to a primary cue based on
an internal weighting, rather than simply by matching external
input statistics (as in [3]).

Our single channel (one encoder model) was trained to better
reconstruct VOT information rather than F0, similar to encoder 1
of the β-ME-VAE. It was trained with the loss function seen in
Equation 2 with ω = 0.999 to upweight VOT information and
ω = 0.001 to downweight F0 information. This channel bases
its categorization mapping almost exclusively on VOT informa-
tion (Figure 2). This model has a similar learning outcome to
the model in [3], in that it weights the two features to different
degrees. The difference between the models is in the cause of
that behavior: whereas the model in [3] relies on long term input
statistics to determine feature weighting, our model’s feature
weighting depends on an internal feature weighting manipula-
tion, encoded in the loss function as ω.

However, an important limitation to this kind of a channel
is that it does not change its feature weighting unless it is re-
trained. To force it to rely more on F0 information, we would
need to either give it different data or a different set of weights ω,
which would result in catastrophic forgetting. This means that
the model does not have adaptive power of switching between
features, but rather it is always attentive to one feature’s infor-
mation. This is not what humans do, as they would categorize
a set of stimuli differently based on the listening condition they
are in. Even in listening situations that are new, such as when
hearing miscorrelated features, the listeners can quickly adapt
their feature weighting to resolve the conflict of the miscorre-
lated features that are never present together for a single English
speech sound.

4.1. β-ME-VAE

The β ME-VAE is built to allow for the type of flexible adap-
tation seen in humans. Human listeners base their listening
decisions on environment and/or speaker. Our model shows
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similar behavior, depending on which encoder most of the infor-
mation comes from. Encoder 1 was trained to better reconstruct
VOT information rather than F0, similar to the single-channel
β-VAE, whereas encoder 2 was trained to better reconstruct F0
information than VOT. To model reliance on features at test time
as seen in [2], we encode all of the test stimuli with both trained
encoders. We then probabilistically weight this information as
described in Equation 3. For example, to simulate the fact that
a listener biases their decision mostly on VOT, we take most of
the information from encoder 1 (prioritizing VOT).

As seen in Figure 3, the probabilistic weighting at test time
shows that the model can change the feature weighting that
characterizes its decision boundary by manipulating how much
information comes from each encoder. It can put nearly all its
weight on one feature (top row), like humans do when they are
listening to miscorrelated features. It can also attend to both
features, with one of the two features being primary, and can
flexibly switch its primary feature (bottom row).

This flexibility is evident in human listeners, who can switch
their reliance on features given the speaker and the situation they
are in. For example, if they find themselves in a situation that has
VOT masked, they change the feature primacy to F0 by taking
most of the information from the encoder 2 (prioritizing F0) (see
lower left decision boundary). Then, with miscorrelated data,
they use even more of the information coming from the encoder
extracting mostly F0 and even less of the information coming
from the encoder extracting mostly VOT (see upper left decision
boundary).

5. Discussion
This paper has introduced a new neural architecture that captures
selective attention and enables behavioral adaptation (shifting
reliance between features) as seen in [2]. This has allowed us to
propose a potential explanation for how the optimal response of
a system can change on a moment-to-moment basis in percep-
tion, even if the relevant environmental statistics have not been
observed through long-term experience.

Relying on features dynamically is a process seen in care-
fully designed laboratory experiments on humans. However,
human listeners are extremely robust in perceiving speech in
unforeseen conditions or with speakers with accents they never
heard before in more naturalistic conditions as well [10, 13].
RDT is an ideal framework for modeling this type of behavior
in humans, because it allows us to model the fact that not all
information is encoded at every moment - only the features that
are most informative for category mapping in the moment. The
use of multiple encoders allows us to capture the fact that which
specific features are most important changes given the situation
and the speaker.

5.1. β VAE

In the future, it will be important to expand this model beyond
just two features. For example, as many as 16 different features
can be used in discriminating voiced versus voiceless stop in-
tervocalically in English, not just VOT or F0 [1]. To expand
our architecture, we could expand the number of encoders and
extract more features, each with a separate encoder.

This idea is appealing because it has qualitative similarities
with neuronal computations of auditory cortex seen experimen-
tally in animals and humans, specifically spectro-temporal recep-
tive fields (STRFs). STRFs are aggregated neuronal responses to
acoustic features and usually reflect activity of several neurons

[26, 27]. Recent work [14] has hypothesized that rapid modu-
lation of STRFs in auditory cortex may play a role in listeners’
rapid adaptation to different listening conditions. Changes in
STRFs are thought to show facilitated sound detection in ferrets
guided by attention [26] and in people guided by prior experience
[27]. Selective attention then is a feature weighting process that
may have markers in the brain and enables listeners to unequally
weight feature information according to their needs.

Based on the parallels with STRFs described above, each
encoder’s output could hypothetically represent an STRF-like
filter in primary auditory cortex (A1). To further evaluate this
hypothesis, we would ideally want to see the weighting mecha-
nisms present in addition to STRFs. Evidence for such weighting
mechanisms would need to show how these ”feature detector”
neurons are pooled together from A1 to make a higher order
sound representation, i.e., how information from A1 is treated
by later processing areas like the superior temporal gyrus (STG).
There is some evidence of category information [28, 29] in STG.
Further research can determine how closely those neural mecha-
nisms correspond to the weighting mechanism proposed here.

Prior research in vision shows that humans are sensitive to
the noise that happens during encoding of the stimuli — the
noisier the stimulus the more difficult it is to perceive. However,
humans ignore the noise that may occur while integrating differ-
ent cues with high confidence [30]. This suggests that flexible
feature weighting may be a cognitive strategy beyond speech
perception. In addition, neuroscience research in animal audition
has shown active neuronal suppression of the non informative
part of the stimulus in a given moment [31]. Ignoring noisy
part of the stimulus would in our model result as simple down-
weighting of information coming from a specific encoder that
we would not want to contribute to the category mapping.

Finally, the choice of how to set attention weights associated
with each encoder is in the present model manual. How listen-
ers decide on this weighting in a particular listening situation
remains an interesting question for future research. Future work
can also expand this model beyond the stimuli that were used in a
particular laboratory study, to account for perception of complex
speech signals in naturalistic conditions with multiple speakers.

6. Conclusion
This research showed that results of selective attention, a strategy
facilitating speech perception, can be implemented in a neural ar-
chitecture. We presented a new model β-ME-VAE that is based
on RDT. This framework explains that perceptual distortions
happen as a byproduct of capacity constrained information ex-
traction. This process enables us to extract the most important
speech features for a particular speech perception task. The ex-
tensions of RDT to a multiple-encoder model enable us to model
selective attention or dynamic feature weighting that changes
on a moment-to-moment basis. When humans show perceptual
flexibility, this may be the result of a neural architecture that
can flexibly focus attention on the most important parts of the
speech signal, rather than simply the result of accumulating the
statistics of the environment.
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