FAME: a Functional Annotation Meta-scheme for multi-modal and multi-lingual parsing Evaluation

Alessandro Lenci, Simonetta Montemagni, Vito Pirrelli, Claudia Soria
Istituto di Linguistica Computazionale – CNR
via della Faggiola 32
Pisa, 56126, ITALY
{lenci,simo,vito}@ilc.pi.cnr.it, soria@ling.unipi.it
Abstract

This paper describes FAME, a functional annotation meta-scheme for cross-comparison and evaluation of existing syntactic annotation schemes, intended to be used as a flexible yardstick in multi-lingual and multi-modal parser evaluation campaigns. We show that FAME complies with a variety of non-trivial methodological requirements, and has the potential for being effectively used as an "interlingua" between different syntactic representation formats.

1 Introduction

Broad coverage parsing evaluation has received growing attention in the NLP community. In particular, comparative, quantitative evaluation of parsing systems has acquired a crucial role in technology assessment. In this context, it is important that evaluation be relatively independent of, or easily parametrizable relative to the following three dimensions of variation among parsing systems:

- **theoretical assumptions**: compared systems may be based on different theoretical frameworks;
- **multi-linguality**: parsers are often optimally designed to deal with a particular language or family of languages;
- **multi-modality**: systems tend to be specialised for dealing with a specific type of input, i.e. written or spoken language.

As to the first point, it is important that alternative annotation schemes be evaluated i) on the basis of the linguistic information they are intended to provide, and ii) in terms of the utility of this information with respect to a particular task. Moreover, multi-linguality and multi-modality are crucial parameters for evaluating the robustness and portability of a given parser, with a view to the growing need for embedding NLP systems into multi-modal and multi-medial applications.

An essential aspect of every evaluation campaign is the specification of an annotation scheme into which the output of the participant systems is converted and on which the system performance is eventually evaluated. A suitable annotation scheme must satisfy certain requirements: first of all, it should be able to represent the information relevant for a certain evaluation task in a way which is naturally conducive to quantitative evaluation. Secondly, it should easily be mappable onto different system outputs, and flexible enough to deal with multilingual phenomena and with the specific nature of both written and spoken language.

The aim of this paper is to illustrate FAME, a Functional Annotation Meta-scheme for Evaluation. We will show that it complies with the above mentioned requirements, and lends itself to effectively being used in comparative evaluation campaigns of parsing systems. There are two main features of FAME that will receive particular emphasis here: it is functional and it is a meta-scheme. We claim that these two features are essential for meeting the specific requirements of comparative parsing evaluation, while tackling issues of multi-linguality and multi-modality in a principled fashion.

2 FAME: Basics

What we intend to offer here is not yet another off-the-shelf annotation scheme, but rather a formal framework for inter-comparison and evaluation of existing annotation practices, at the level of linguistic analysis traditionally known as "functional". Hereafter, this framework will be referred to as an annotation "meta-scheme".

2.1 Why functional evaluation

The choice of functional evaluation is largely motivated by empirical issues that lie at the core of the evaluation of NLP systems. We contend that information about how functional relations are actually instantiated in a text is important for the following reasons:

- it is linguistically valuable, both as an end in itself and as an intermediate linguistic resource; in fact, it is sufficiently close to semantic representations to be used as an intermediate stage of analysis in systems requiring full text understanding capabilities;
- it is likely to become a more and more heavily used information asset in its own right for NLP applications: a shift of emphasis from purely pattern matching methods operating on n-word windows to functional information about word pairs is witnessed both in information retrieval/filtering systems (Grefenstette, 1994) and in word sense disambiguation systems (as witnessed by the last SENSEVAL and MANSEVAL evaluation campaigns);
- it is comparatively easy and “fair” to evaluate since it overcomes some of the shortcomings of constituency-based evaluation (Carroll
and Briscoe, 1996; Carroll et al., 1998; Sampson, 1998; Lin, 1998);

- it represents a very informative “lowest common ground” of a variety of different syntactic annotation schemes (Lin, 1998);

- it is naturally multi–lingual, since functional relations probably represent the most informative level of syntactic analysis at which cross–language comparability makes sense;

- it permits joint evaluation of systems dealing with both spoken and written language. Spoken data are typically fraught with many instances of disfluency, anacoluthon, syntactic incompleteness and any sort of non-canonical syntactic structure (Antoine, 1995): the level of functional analysis naturally reflects a somewhat standardised representation, which abstracts away from the surface realisation of syntactic units in a sentence, thus being relatively independent of disfluency phenomena and phrase partials (Klein et al., 1998);

- it is “local” enough in character to make provision for partial annotation: since a functional relation always involves two lexical heads at a time, as opposed to complex hierarchies of embedded constituents, it is comparatively easy to evaluate an annotated text only relative to a subset of the actually occurring head words, e.g. those carrying a critical information weight for the intended task and/or specific domain.

2.2 Why an annotation meta–scheme

The meta–scheme for inter–system parsing evaluation outlined in the following pages is intended to address the following basic requirements:

- provide not only a measure of coverage but also of the utility of the covered information as opposed to missing information;

- make explicit, through annotation, information which is otherwise only indirectly derivable from the parsed text;

- factor out logically independent primitive dimensions of functional information.

All these requirements serve the main purpose of making evaluation open to both annotation–dependent and task–dependent parameterisation. This is felt important since the definition of closeness to a standard, and the utility of an analysis that is less–than–perfect along some dimension vary from task to task, and, perhaps more crucially, from annotation scheme to annotation scheme.

The basic idea underpinning the design of the annotation meta–scheme is that information about how functional relationships are actually instantiated in context can be factored out as logically independent levels of information. To be more concrete, a binary functional relationship can be represented formally as consisting of the following types of information:

i. the unordered terms of the relationship (i.e. the linguistic units in text which enter a given functional relationship): example (give, Mary);

ii. the order relationship between the terms considered, conveying information about the head and the dependent: example <give, Mary>;

iii. type of relationship involved: example, the functional relation of the pair (give, Mary) in the sentence John gave the book to Mary is indirect object;

iv. morpho–syntactic features associated with the dependent and/or the head; e.g. the dependent in the pair (give, Mary) is “non-clausal” (nc);

v. the predicate–argument status of the terms involved: for example give (John, book, Mary) in John gave the book to Mary.

Most available tag taxonomies for functional annotation (such as those provided by, e.g., Karlsson’s Constraint Grammar (Karlsson et al., 1995), or the SPARKLE annotation scheme (Carroll et al., 1996), to mention but two of them) typically collapse the levels above into one level only, for reasons ranging from a theoretical bias towards a maximally economic description of the phenomena in question, to choices chiefly motivated by the intended application. A typical example of this is the tag “xcomp” in the SPARKLE scheme, which (following LFG) covers all subcategorized open predicates: namely, traditional predicative complements (whether subject or object predicative), and unsaturated clausal complements, such as embedded infinitival and participial clauses. In Constraint Grammar, predicative nominal and adjectival phrases are tagged as “subject complement” or “object complement”, while, say, controlled infinitive clauses, as in Mary wants to read, are marked functionally as an “object” of the main verb. Any context–free attempt to map SPARKLE “xcomp” onto a Constraint Grammar tag, would inevitably be one–to–many and not necessarily information–preserving. Clearly, both aspects make it very hard to provide any sort of fair
baseline for comparing a SPARKLE annotated text against the same text tagged with Constraint Grammar labels.

The design of a meta-scheme is intended to circumvent these difficulties by spelling out the levels of information commonly collapsed into each tag. Concretely, SPARKLE xcomp(want, leave), for the sentence She wants to leave, appears to convey two sorts of information: a) that leave is a complement of want, b) that leave is an open predicate. Both pieces of information can be evaluated independently against levels i, ii, iii and v above of FAME.

Surely, a translation into FAME is not always guaranteed to be information preserving. For example, xcomp(want, leave) can also be interpreted as conveying information about the control of leave, provided that some information is available about the main verb want, and the lack of a direct object in the sentence. However, this sort of context–sensitive translation would involve a more or less complete reprocessing of the entire output representation.

In our view, a partial context-free translation into FAME represents a sort of realistic compromise between the fairly uninformative one-to-many mapping between - say - SPARKLE and Constraint Grammar, on the one hand, and the complete translation of the information conveyed by one scheme into another format, on the other hand.

2.3 Information layers in FAME

To date, FAME covers levels i–iv only. The building blocks of the proposed annotation scheme are functional relations, where a functional relation is an asymmetric binary relation between a word called head and another word called dependent. We assume only relations holding between lexical or full words. Therefore, we exclude functional relations involving grammatical elements such as determiners, auxiliaries, complementizers, prepositions, etc. The information concerning these elements is conveyed through features, as described below in section 2.3.3.

Each functional relation is expressed as follows:

```
dep_type (lex_head . head_features> ,
        dependent . <dep_features>)
```

"Dep_type" specifies the relationship holding between the lexical head (lex_head) and its dependent. The head and the dependent of the relation are further specified through a (possibly empty) list of valued features (respectively "head_features" and "dep_features"), which complement functional information.

2.3.1 The hierarchy of functions

Dep_types are hierarchically organised, in order to allow for underspecified representations which may be useful to avoid penalisation of highly ambiguous functional analyses (see below). The hierarchy of relations is given in figure 2.3.1 below. In the hierarchy, the "subject" is opposed to other grammatical relations by being assigned a higher prominence in the taxonomy of syntactic functions, as customary in contemporary grammar theories (e.g. HPSG, GB). Moreover, modifiers and arguments are subsumed under the same "complement" node, allowing for the possibility of leaving underspecified the distinction between an adjunct and a subcategorised argument in those cases where the distinction is difficult to draw automatically.

2.3.2 The typology of functions

In what follows we sketchily define each functional relation; examples are provided for the leaf nodes of the hierarchy only.

```
dep(head, dependent) is the most generic relation between a head and a dependent, subsuming the distinction between subject and complement.
```

```
subj(head, dependent) is the relation between a predicate and its subject:
subj(arrive, John) John arrived in Paris
subj(employ, IBM) IBM employed 10 C programmers
subj(employ, Paul) Paul was employed by IBM
```

Subj refers to the superficial subject of the predicate, regardless of it being used in the active or passive voice. Moreover, it can also be used to mark subject control relations and eventually raising to object/subject, as exemplified below:

```
subj(leave, John) John promised Mary to leave
subj(leave, Mary) John ordered Mary to leave
```
subj(be,her) John believes her to be intelligent
subj(be,John) John seems to be intelligent
Also clausal subjects are marked through Subj:
subj(mean,leave) that Mary left meant she was sick
subj(require,win) to win the America’s Cup requires heaps of cash

comp(head,dependent) is the most generic relation between a head and a complement, whether a modifier or a subcategorized argument.

mod(head,dependent) holds between a head and its modifier, whether clausal or non-clausal; e.g.,
mod(flag.red) a red flag
mod(walk,slowly) walk slowly
mod(walk,John) walk with John
mod(Picasso,painter) Picasso the painter
mod(walk,talk) walk while talking
Mod is also used to encode the relation between an event noun (including deverbal nouns) and its participants, and the relation between a head and a semantic argument which is syntactically realized as a modifier (as in the passive construction), e.g.,
mod(destruction,city) the destruction of the city
mod(kill,Brutus) he was killed by Brutus

arg(head,dependent) is the most generic relation between a head and a subcategorized argument.

dobj(head,dependent) is the relation between a predicate and its direct object, either clausal or non-clausal, e.g.,
dobj(read,book) John read many books
dobj(say,accept) Paul said that he accepts his offer
dobj(intend,leave) Paul intends to leave IBM

iobj(head,dependent) is the relation between a predicate and the indirect object, i.e. the complement expressing the entity which is the recipient or beneficiary of the action expressed by the verb, e.g.,
iobj(speak,Mary) John speaks to Mary
iobj(give,Mary) John gave Mary the contract
iobj(give,Mary) John gave the contract to Mary

oblobj(head,dependent) is the relation between a predicate and a non-direct complement, either non-clausal or clausal, e.g.,
oblobj(live,Rome) John lives in Rome
oblobj(inform,run) John informed me of his run
oblobj(inform,run) Paul informed me that he ran

pred(head,dependent) is the relation which holds between a head and a predicative complement, which in its turn describes or refers to either the subject or the object of the sentence, e.g.,
pred(be,intelligent) John is intelligent
pred(consider,genius) John considers Mary a genius

In order to represent conjunction and disjunction, FAME avails itself of two symmetric relations conj and disj, which lie outside the dependency hierarchy. Consider for instance the FAME representation of the following sentence, containing a conjoined subject:

John and Mary arrived
subj(arrive,John); subj(arrive,Mary)
conj(John, Mary)
The FAME representation of the sentence John or Mary arrived differs from the previous one only in the type of relation linking John and Mary; namely, disj(John, Mary).

2.3.3 Feature specification
In FAME, a crucial role is played by the features associated with both elements of the relation. Dependent features are as follows:

• Intro(ducer): it refers to the element which possibly introduce the dependent in a given functional relation, i.e. prepositions and conjunctions, e.g.,
iobj(give, Mary.<intro=“to”>) give to Mary
dobj(say, accept.<intro=“that”>) Paul said that he accepts his offer

• Case: it encodes the case of the dependent, e.g.,
iobj(dare, gli.<case=DAT>) dargh ‘give to him’

• Synt_real: it refers to a broad classification of the syntactic realization of a given dependent, with respect to its being clausal or non-clausal, or with respect to the type of clausal structure (i.e. whether it is an open function or a closed function). Possible values of this feature are:
 - x: a subcategorized argument or modifier containing an empty argument position which must be controlled by a constituent outside it, e.g.,
dobj(decide,leave.<synt_real=x>) John decided to leave
 - c: a subcategorized argument or modifier which requires no control by a constituent outside it, e.g.,
dobj(say, leave.<synt_real=c>) John said he left
 - nc: a non-clausal argument or modifier, e.g.,
dobj(eat, pizza.<synt_real=nc>) John ate a pizza
Head features are as follows:

- **Diath**: it specifies the diathesis of a verbal head, e.g.
 subj(employ, <diath=passive>, Paul) Paul was employed by IBM
 subj(employ, <diath=active>, IBM) IBM employed Paul

- **Person**: it specifies the person of a verbal head, e.g.
 subj(eat, <person=3>, he) he eats a pizza

- **Number**: it specifies the number of a verbal head, e.g.
 subj(eat, <number=sing>, he) he eats a pizza

- **Gender**: it specifies the gender of a head, e.g.
 subj(arrivare, <gender=fem>, Maria) Maria è arrivata 'Maria has come'

3 FAME at work

Theory-neutrality Theory-neutrality is an often emphasised requirement for reference annotation schemata to be used in evaluation campaigns (see GRACE, (Adda et al., 1998). The problem with theory neutrality in this context is that, although some agreement can be found on a set of basic labels, problems arise as soon as the definition of these labels comes in. For example, the definition of subject as a noun constituent marked with nominative case is not entirely satisfactory, since a system might want to analyse the accusative pronoun in John believes her to be intelligent as the subject of the verb heading the embedded infinitival clause (as customary in some linguistic analyses of this type of complements). Even agreement, often invoked as a criterial property for subject identification, may be equally tricky and too theory-loaded for purposes of parser comparison and evaluation.

The approach of FAME to this bunch of issues is to separate the repertoire of functional relation types (labels), from the set of morpho-syntactic features associated with the head and dependent, as shown in the examples below:

subj(be, she, <case=accusative>) John believes her to be intelligent
subj(be, she, <case=nominative>) She seems to be intelligent

By doing this way, emphasis is shifted from theory-neutrality (an almost unattainable goal) to representation modularity: a functional representation is articulated into different information levels, each factoring out different but possibly inter-related linguistic facets of functional annotation.

Intertranslatability A comparative evaluation campaign has to take into account that participant systems may include parsers based on rather different approaches to syntax (e.g., dependency-based, constituency-based, HPSG, LFG, etc.) and are applied to different languages and test corpora. For a comparative evaluation to be possible, it is therefore necessary to take into account the specificity of a system, while at the same time guaranteeing the feasibility and effectiveness of a mapping of the system’s output format onto the reference annotation scheme. It is important to bear in mind at this stage that:

- most broad-coverage parsers are constituency-based;
- the largest syntactic databases (treebanks) use constituency-based representations.

It is then crucial to make it sure that constituency-based representations, or any other variants thereof, be mappable onto the functional reference annotation meta-scheme. The same point is convincingly argued for by Lin (1998), who also provides an algorithm for mapping a constituency-based representation onto a dependency-based format. To show that the requirement of intertranslatability can be satisfied by FAME, we consider here four different analyses for the sentence John tried to open the window together with their translation equivalent in the FAME format:

1. **ANLT Parser (Briscoe & Carroll, 1995)** - traditional PSG representation:

```
(Verb (N2 (N1 (NP John_NP1))))
  (V1 (V0 tried_VBD))
  (V1 (V0 to_TO))
  (V1 (V0 open_VVO))
  (N2 (DT the_AT)(N1 (NP window_NN1)))))
```

FAME equivalent:

subj(try, John)

2. **Fast Partial Parser (Grefenstette, 1994):**

```
SUBJ(try, John)
OBJ(open, window)
```

FAME equivalent:
subj(try, John)
dobj(open, window)
subj(open, John)
mod(open, try)

3. Finite State Constraint Grammar Parser (Karlsson et al., 1995):
John N SUBJ tried V YY MAINING to INF MARK open V_INF MV OBJ the DET window NOBJ.

FAME equivalent:
subj(try, John)
dobj(try, open.<introducer="to", synt_real=x>)
dobj(open, window)

4. PENN Predicate Argument structure (Marcus et al, 1994):
want(try,(John, open(John, window))).

FAME equivalent:
subj(try, John)
dobj(try, open)
subj(open, John)
dobj(open, window)

Let us suppose now that the reference analysis for the evaluation of the same sentence in FAME is as follows:
subj(try, John)
dobj(try, open.<introducer="to", synt_real=x>)
subj(open, John)
dobj(open, window)

Notice that this representation differs from the output of the ANLT Parser and of the Finite State Constraint Grammar Parser mainly because they both give no explicit indication of the control relationship between the verb in the infinitive clause and the matrix subject. This information is marked in the output of both the Fast Partial Parser and the PENN predicate-argument tagging. Note further that the Fast Partial Parser gives a different interpretation of the infinitival complement, which is marked as being modified by try rather than being interpreted as a direct object of try. It is reasonable to argue, however, that the difference represents the consequence of theory internal assumptions concerning the analysis of subject-control structures, and should accordingly be counted out for the purposes of evaluation.

Evaluation of dialogue systems Dialogue management systems have to be able to deal with both syntactic and semantic information at the same time. These two levels of information are usually dealt with separately for reasons of higher ease of representation, and ease of change, updating and adaptation to different domains and different languages. Nonetheless, the formalisms used for syntax and semantics must have a certain degree of similarity and some additional knowledge about the relationships between syntax and semantics is necessary. An example is provided by what has been done in the ESPRIT SUNDIAL project (Peckam, 1991), where syntax is defined using a dependency grammar augmented with morphological agreement rules; and semantics is declared through case frames (Fillmore, 1968; Fillmore, 1985) using a conceptual graph formalism. An additional bulk of knowledge, called mapping knowledge, specifies possible links between the symbols of the dependency grammar and the concepts of case frames. In this way syntactic and semantic controls are performed at the same time, avoiding the generation of parse trees that must afterwards be validated semantically. The FAME meta-scheme fits in very well with this approach to parsing, as a) functional annotation is readily translatable into dependency–like tags, and b) it makes provision for integration of syntactic and semantic information.

Furthermore, the local character of FAME functional analysis as a dependency between specific headwords, makes annotation at the functional level compatible with score driven, middle-out parsing algorithms, whereby parsing may "jump" from one place to another of the sentence, beginning, for example, with the best-scored word, expanding it with adjacent words in accordance with the language model (Giachin, 1997). Scoring can be a function of reliability of speech recognition in the word lattice, or, alternatively, of the relevance of a word in a specific domain/task.

Use of underspecification FAME hierarchical organization of functional relations makes it possible to resort to underspecified tags for notoriously hard cases of functional disambiguation. For example, both Gianni and Mario can be subject or object in the Italian sentence Mario, non l’ha ancora visto, Gianni ‘Mario has not seen Gianni yet’ / ‘Gianni has not seen Mario yet’. In this case, the parser could leave the ambiguity unresolved by using the underspecified functional relation dep, e.g. dep(vedere,Mario) and dep(vedere,Gianni).

Similarly, the underspecified relation comp comes in handy for those cases in which it is difficult to draw a line between adjuncts and subcategorized elements. This is a crucial issue if one considers the wide range of variability in the subcategorization information contained by the lexical resources used by partici-
pant systems. Given the sentence John pushed the cart to the station, for example, a comp dep type is compatible both with an analysis where to the station is tagged as a modifier, and with an analysis which considers it an argument. Underspecification thus guarantees a more flexible and balanced evaluation of the system outputs, especially relative to those constructions whose syntactic analysis is controversial.

Conclusion and developments The suggestion of using a functional meta-scheme as a fair basis for parsing evaluation rests on the idea that parsing systems must be assessed for what they are intended to provide, not for how well they meet the requisites of other annotation schemes. Still, it makes a lot of sense to compare the amount of information provided by different parsers by casting this information into a common format. The distributed information structure of FAME is conducive to an incremental evaluation procedure, which ranges from a low evaluation level (involving sheer identification of the terms of a syntactic relationship and/or their order), to finer grained levels, including morphosyntactic information, dependency type, and ultimately predicate–argument structure. The evaluation of a text annotated for functional information can then be conceived of as a function of estimating precision and recall for each of the independent evaluation levels envisaged. Evaluation results obtained for the different levels can eventually be combined together or, for particular purposes, assessed in their own right (e.g., for IR applications the basic evaluation level could be sufficient). We are considering the possibility of extending FAME through addition of still further levels of linguistic information.

References

