A Tighter Lower Bound for Optimal Bin Packing

Heng-Yi Chao, Mary P. Harper, and Russell W. Quong
School of Electrical Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285
Email: {hengyi,harper,quong}@ecn.purdue.edu

September 17, 1994

Abstract

In this paper, we present an efficient algorithm to compute a tighter lower bound for
the one-dimensional bin packing problem. The time complexity of the algorithm is
$O(n \log n)$. We have simulated the algorithm on randomly generated bin packing
problems with item sizes drawn uniformly from $(a, b], 0 \leq a < b \leq B$. If our lower bound is
used, on average, the error of BFD is less than 2%. For $a + b \geq B$, the error is less than
0.003%.

Key words: bin packing, lower bound, best fit decreasing, harmonic partition, matching.
1 Introduction

For NP-complete problems, it may not be possible to find optimal solutions in polynomial time. The quality of an approximation algorithm A is often measured by its asymptotic performance ratio \(3\) or worst-case performance ratio \(6\). For an instance \(L\) of a minimization problem \(II\), let \(S^*(L)\) be the optimal solution and \(A(L)\) be the solution obtained by using algorithm A. If a quantity implicitly depends on the problem instance \(L\), then we drop \(L\) from our notation. The asymptotic performance ratio of algorithm A for minimization problem II, is defined as \(3\), page 128\):

\[
R(A) = \inf \left\{ r \geq 1 : \text{for some } k \in \mathbb{N}, \frac{A(L)}{S^*(L)} \leq r, \forall L \in \text{domain}(II), \text{satisfying } S^*(L) \geq k \right\}
\]

Comparing two algorithms solely using worst-case performance ratios can be misleading because the average-case performance may differ significantly from the worst-case performance. For an instance \(L\) of a minimization problem, if \(lb \leq S^*(L) \leq ub\), then \(lb\) is called a lower bound and \(ub\) is called an upper bound on the optimal solution. These bounds are useful because \(S^*\) may not be computed in polynomial time. Clearly, \(lb\) (\(ub\)) should be as large (small) as possible, with the goal of having \(lb = S^* = ub\). Note that an existing heuristic algorithm provides an upper bound on \(S^*\). In this paper, we present an efficient algorithm to compute a tighter lower bound for the off-line one-dimensional bin packing problem (a packing algorithm is called on-line if it packs the items in the order they are received; otherwise it is off-line).

The one-dimensional bin packing problem \(3\) is the problem of partitioning (or packing) a set \(L\) of \(n\) objects (or items) into a minimum number of bins, such that the sum of the object sizes in each bin does not exceed the bin size, \(B\). Let \(s_i\) be the size of object \(i\), \(s_i \in (0, B]\). If \(B\) and \(s_i\) are integers, then it is called a discrete bin packing; if \(B = 1\) and \(s_i\) are reals in \((0,1]\), then it is called a continuous bin packing.

Because the bin packing problem is NP-complete, heuristic algorithms for the bin packing problem have been studied extensively \(1, 4, 5, 6\). Some of the basic algorithms include First-Fit (FF), Best-Fit (BF), Worst-Fit, and Next-Fit. The Best-Fit algorithm assigns each object sequentially to the most fully packed bin into which it fits. First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD) are variations of FF and BF in which the objects are sorted in decreasing (or non-increasing) order before being packed. Johnson \(4, 5\) provides the worst-case performance ratios, \(R(FF) = \frac{17}{10}\) and \(R(FFD) = \frac{11}{9}\). The BF and BFD algorithms have the same worst-case performance as FF and FFD \(5\); however, BFD performs better than the others in practice. In this paper, we empirically show that BFD performs very well for a wide range of object size distributions.

Define \(SUM = \lfloor (\sum_{i \in L} s_i)/B \rfloor\). Obviously, \(SUM\) is a lower bound on \(S^*\). Many researchers \(1, 9\) have used empty space (or wasted space), the difference between the number of bins used and \(SUM\), to measure the performance of a packing algorithm. Bentley et al. \(1\) used empty space to measure the average performance of FF and FFD for packing items drawn uniformly from the range \((0, b)\),
0 < b ≤ 1. The empty space remains consistently small until b reaches a critical threshold between 0.8 and 0.9 (depending upon n), above which it grows without bound. In particular, the empty space grows roughly as 0.3√n, for b = 1.0 [1, 7]. Shor [9] provided tighter lower bounds and upper bounds on the expected wasted space for the on-line BF and FF algorithms when packing items uniformly distributed on [0,1]. When there are many small objects, the empty space seems a good performance measurement. However, if the object sizes tend to be large, the simulation data in Section 4 show that the empty space is not a good performance measurement.

Lueker [8] considered packing items drawn uniformly from intervals [a, b], 0 < a < b < 1. He determined lower bounds on the optimum packing ratios for certain values of a and b, where the optimum packing ratio is defined as the expected number of bins to the expected total item sizes. He considered four regions on the a-b plane and gave a feasible function for each region, where a feasible function is a real-valued function u(x) such that ∀ k ≥ 1,

\[\sum_{i=1}^{k} x_i \leq 1 \Rightarrow \sum_{i=1}^{k} u(x_i) \leq 1 \] (1)

We will describe how to use feasible functions to compute a lower bound in Section 2. The four regions and their corresponding feasible functions defined in [8] are shown in Table 1. A partial plot (a ≥ 1/5) of the regions on the a-b plane defined by Lueker is shown in Figure 1. Note that these regions cover only part of the a-b plane.

A useful technique for developing a heuristic packing algorithm is to partition the interval (0,B) into sub-intervals. Yao [10] classified objects and bins into four classes, (0, \(\frac{1}{3} \)), (\(\frac{1}{3}, \frac{2}{3} \)), (\(\frac{2}{3}, 1 \)).
Figure 1: A partial plot \((a \geq 1/5)\) of the regions on the \(a\)-\(b\) plane defined by Lueker.
Each object was first classified and then assigned to a bin corresponding to its class in a first-fit fashion. Lee and Lee [6] proposed a harmonic algorithm which partitions \((0,1]\) into \(M\) intervals:
\[I_k = \left(\frac{1}{k+1}, \frac{1}{k}\right]\] for \(1 \leq k < M\) and \(I_M = (0, \frac{1}{M}]\). An object \(i\) is called an \(I_k\)-item if \(s_i \in I_k\), and a bin designated to pack \(I_k\)-items exclusively is called an \(I_k\)-bin. Lee and Lee’s algorithm classifies each incoming object as an \(I_k\)-item, and then places it into a nonfull \(I_k\)-bin.

We modify the definition of a harmonic partition to accommodate discrete bin packing over the interval \((0, B]\). The \(k\)-th harmonic interval is denoted \(I_k\), \(k = 1, 2, \ldots\), where \(I_k = \{x : \frac{B}{k+1} < x \leq \frac{B}{k}\}\). The term \(I_{i_1} \cup \cdots \cup I_{i_k}\) is the union of intervals \(I_{i_1} \cup \cdots \cup I_{i_k}\). For example, if \(B=100\), we have
\[I_1=(50..100], I_2=(33..50], I_3=(25..33], \text{ and } I_{2,3} = I_2 \cup I_3 = (25,50].\]
We note at most one \(I_{2,3}\)-item can be packed with an \(I_1\)-item. Also, given only \(I_{k}\)-items, it is optimal to pack \(k\) of them to a bin, choosing items arbitrarily. We define \(L_i\) to be the set of \(I_i\)-items in \(L\) and \(L_{i_1} \cup \cdots \cup I_{i_k}\) to be the set of \(I_{i_1} \cup \cdots \cup I_{i_k}\) items in \(L\).

In the rest of this paper, we present a new lower bound that applies when \(SUM\) becomes a poor lower bound, namely, when there are many medium to large objects. In Section 2, we discuss our lower bound strategies. In Section 3, we present our lower bound. In Section 4, we show that our lower bound is effective in practice.

2 Our Lower Bound Strategies

Our lower bound is based on several concepts: the subproblem principle, Lueker’s functions, \(SUM\), and special handling of large-sized objects which we classify as \(BIG\).

Lemma 1 [Subproblem Principle] The optimal solution of a subproblem \(L_{\text{sub}} \subseteq L\) is a lower bound for the original problem \(L\). It follows that a lower bound for \(L_{\text{sub}}\) is also a lower bound for \(S^*(L)\), because \(lb(L_{\text{sub}}) \leq S^*(L_{\text{sub}}) \leq S^*(L)\).

Lemma 2 describes how we can use Lueker’s functions to compute a lower bound. If \((a, b)\) is contained in one of the regions defined in Table 1, then a lower bound can be computed by using the feasible functions given in the table. We will call this lower bound \(LLB\) (Lueker’s Lower Bound).

Lemma 2 Let \(L\) be a bin packing instance containing \(n\) items distributed over \((a, b]\), \(0 \leq a < b \leq B\). If \(u(x)\) is a feasible function on \((a, b]\), then
\[\lceil \sum_{i=1}^{n} u(s_i/B) \rceil \leq S^*.\]

Proof: For each bin \(k\) in an optimal packing, \(\sum_{i \in k} s_i \leq B\) (i.e., \(\sum_{i \in k} (s_i/B) \leq 1\), where \(i \in k\) denotes item \(i\) being packed in bin \(k\). Hence, \(\sum_{i \in k} u(s_i/B) \leq 1\) because \(u(x)\) is feasible (see Equation 1). It follows that,
\[\sum_{i=1}^{n} u(s_i/B) = \sum_{k=1}^{S^*} \sum_{i \in k} u(s_i/B) \leq \sum_{k=1}^{S^*} 1 = S^*\]
and hence, \(\lceil \sum_{i=1}^{n} u(s_i/B) \rceil \leq S^*\).
When object sizes are uniformly distributed over \((0, B]\), \(SUM\) is a good lower bound \([1]\). However, if object sizes are not uniformly distributed or tend to be large, \(SUM\) becomes unrealistically optimistic. A better lower bound must carefully consider the largest, and hence, the most difficult-to-pack items, that is, \(L_{1,2,3}\). Hence, we derive a lower bound, \(BIG\), for \(S^*(L_{1,2,3})\), which is so named because it takes into account the big items. \(BIG\) is a lower bound of \(S^*\) since, by the subproblem principle, \(BIG \leq S^*(L_{1,2,3}) \leq S^*\). A lower bound of \(S^*(L_{1,2,3})\) is the best we can do, because determining \(S^*(L_{1,2,3})\) is NP-complete (we can reduce three-dimensional matching \([3, \text{page 50}\] to bin packing \(L_{1,2,3}\), in which each bin contains three objects).

Our lower bound \(OB\) contains three major components, \(SUM, LLB\) and \(BIG\). \(OB\) is a lower bound as it is the maximum of the lower bounds.

Lemma 3 \(OB = \max(SUM, LLB, BIG)\) is a lower bound for \(S^*\).

We now show how to compute \(BIG\), a lower bound of \(S^*(L_{1,2,3})\). The main idea behind the computation of \(BIG\) is to perform a sequence of optimal steps for packing objects in \(L_{1,2,3}\) such that these packed pseudo objects cannot be packed with any other objects. Then we compute a lower bound for packing the leftover items and add it to the number of bins required by the packed pseudo objects.

Let \(A = A_B \cup A_S\). We say \(A_B(A_S)\) is a big (small) set if packing \(A_B\) always requires \(|A_B|\) bins and for each item \(i \in A_B\), we can pack at most one other item in \(A_S\) with \(i\). For example, \(|I_1|\) bins are needed to pack \(L_1\) (because each \(I_1\)-item requires a bin), and each \(I_{2,3}\)-item can be packed with at most one \(I_1\)-item. Hence, \(L_1\) is a big set \((A_B)\) and \(L_{2,3}\) is a small set \((A_S)\). Assume we pack \(A_B\) into bins with various items from \(A_S\) via packing \(P\). Let \(P(A_S, A_B)\) be the set of leftover items from \(A_S\) not packed with \(A_B\). Let \(P(A_S, A_B) = \{P(A_S, A_B) : \text{for all packings } P\}\). Let \(U = P(A_S, A_B)\) and \(U' = P'(A_S, A_B)\) for two packings \(P\) and \(P'\). Assume \(U\) and \(U'\) are sorted into decreasing order, so that \(U = \{u_1 \geq u_2 \geq \cdots\}\), and \(U' = \{u'_1 \geq u'_2 \geq \cdots\}\). We say \(U\) is strongly minimal over \(P(A_S, A_B)\), if \(\forall U', |U| \leq |U'|\) and \(u_i \leq u'_i\), where \(1 \leq i \leq |U|\). Namely, \(U\) is minimal both in cardinality and on an item-by-item basis over all sets of leftover small items. Analogously, \(U\) is strongly maximal if \(\forall U', |U| \geq |U'|\) and \(u_i \geq u'_i\), where \(1 \leq i \leq |U'|\). The next lemma indicates why computing a strongly minimal set is useful for bin packing.

Lemma 4 If \(U\) is strongly minimal over \(P(A_S, A_B)\), then \(S^*(U) \leq S^*(U')\), \(\forall U' = P'(A_S, A_B)\).

Proof: In the optimal packing of \(U'\), replacing \(u'_i\) with \(u_i\) is valid as \(u_i \leq u'_i\). Thus, \(S^*(U) \not> S^*(U')\).

The next theorem indicates that after packing big items, if the set of the remaining items is strongly minimal, the packing is progressing optimally.

Theorem 1 If \(U = P(A_S, A_B)\) is strongly minimal, then \(P\) is part of an optimal packing of \(A\).
Proof: Let P' be any packing of A and let $U' = P'(A_S, A_B)$. Both P and P' require $|A_B|$ bins to pack A_B. If we optimally pack U and U', we need $|A_B| + S^*(U)$ and $|A_B| + S^*(U')$ bins, respectively. However, as U is strongly minimal, $S^*(U) \leq S^*(U')$ by Lemma 4. Thus, packing P followed by optimally packing U cannot be improved upon.

Note that L_1 is a big set and $L_{2,3}$ is a small set. If we can find a strongly maximal set X of $L_{2,3}$ and its corresponding set Y in L_1, then it is optimal to pack each pair of objects in (X, Y) by Theorem 1.

3 BIG, A New Lower Bound for $S^*(L_{1,2,3})$

In this section, we describe how to calculate BIG, a lower bound for $S^*(L_{1,2,3})$. We first pack L_1 with items from $L_{2,3}$ by using an optimal matching algorithm which minimizes the number and size of the “unmatched” items in $L_{2,3}$, denoted $U_{2,3}$. We then determine a lower bound for $S^*(U_{2,3})$, and add it to $|L_1|$, because the L_1-items will always occupy $|L_1|$ bins no matter how they are packed. In Section 3.1, we give the matching algorithm and prove its optimality; in Section 3.2, we determine a lower bound for the unmatched items, $U_{2,3}$.

3.1 Optimal Matching

We say that two sets $X = \{x_1, \ldots, x_m\} \subseteq L_{2,3}$ and $Y = \{y_1, \ldots, y_m\} \subseteq L_1$ is a matching if for $1 \leq i \leq m$, each pair x_i and y_i can be placed in the same bin. Note that (X, Y) forms a matching [2] in the common sense because each $I_{2,3}$-item can be packed with at most one I_1-item. We use the greedy algorithm $\text{MATCH}(L_{1,2,3})$ to match the items in $L_{2,3}$ in order of decreasing size, with L_1-items. Intuitively, MATCH is driven by $L_{2,3}$, not L_1. To guarantee that the computed value is a lower bound, it is important that the leftover $L_{2,3}$-items, $U_{2,3}$, is strongly minimal. Algorithm MATCH computes the sets X and Y of matched $L_{2,3}$ and L_1 items, respectively.

Theorem 2 proves that the matching (X, Y) produced by $\text{MATCH}(L_{1,2,3})$ is part of an optimal packing of $L_{1,2,3}$.

Theorem 2 Let X be the set of $L_{2,3}$-items matched by $\text{MATCH}(L_{1,2,3})$. Let X' be the set of $L_{2,3}$-items matched by any other matching algorithm A'. Let $X = \{x_1, \ldots, x_n\}$ and $X' = \{x'_1, \ldots, x'_{n'}\}$ where X and X' have been sorted into decreasing (non-increasing) order. Then X is strongly maximal over all X'.

Proof: To simplify the notation, we take x_i to represent both the object and its size. We use induction on i, showing $x_i \geq x'_i$, thus we are comparing the ith largest element matched by A with that of A'. Recall that $\text{MATCH}(L_{1,2,3})$ repeatedly matches the largest remaining item in $L_{2,3}$ with the largest item, y_i, remaining in L_1. Let y_i be the ith I_1-item matched by $\text{MATCH}(L_{1,2,3})$ and $Y_i = \{y_1, \ldots, y_i\}$.
Algorithm `\text{match}(L_{1,2,3})`

\begin{verbatim}
sort $L_{2,3} = \{v_1 \geq \cdots \geq v_m\}$;
X := Y := \emptyset;
for each $v_i = v_1$ to v_m in $L_{2,3}$
 $T := L_1$ items matching v_i
 if (T is not empty) then
 $t :=$ the largest item in T;
 move t from L_1 to Y
 move v_i from $L_{2,3}$ to X
 end
end
$U_1 := L_1$;
$U_{2,3} := L_{2,3}$;
end
\end{verbatim}

Basis: ($i = 1$) If x_1 is the largest item matched by `\text{match}(L_{1,2,3})`, none of the larger items originally in $L_{2,3}$ could have been matched. Thus, x_1 is the largest matchable item possible, giving $x_1 \geq x_1'$.

Inductive step: Assuming the largest k items in X are maximal, $x_i \geq x_i'$, for $1 \leq i \leq k$, we show the $(k + 1)$st item in X is maximal, i.e., $x_{k+1} \geq x_{k+1}'$, assuming X' has a $(k + 1)$st item.

Assume the contrary, namely $x_{k+1}' > x_{k+1}$. By the inductive hypothesis, $x_k \geq x_k'$, so we have $x_k \geq x_k' \geq x_{k+1}' > x_{k+1}$. A' is able to match x_{k+1}' to some item in L_1, but `\text{match}(L_{1,2,3})` is unable to match x_{k+1}', otherwise it would have matched x_{k+1}' and not x_{k+1}. Hence, at this point, all remaining items in L_1 must be greater than $(B - x_{k+1}')$ in size. As the k matched items \{x_1, x_2, \ldots, x_k\} all have a size greater than or equal to x_{k+1}', each item in Y_k must be less than or equal to $(B - x_{k+1}')$. Thus, initially L_1 contains exactly k items less than or equal to $(B - x_{k+1}')$, namely Y_k. However, A' has already matched k items greater than or equal to x_{k+1}', namely \{x_1', \ldots, x_k'\}, and these k items must be matched with Y_k. Thus, no remaining item in L_1 is small enough to be matched with x_{k+1}', so A' cannot possibly match x_{k+1}', yielding a contradiction. Thus, we must have $x_{k+1} \geq x_{k+1}'$.

A similar argument shows $|X| \geq |X'|$. That is, if $n < n'$, X cannot contain an x_{n+1} item, but the above reasoning shows that X' cannot contain a corresponding x'_{n+1} item either. \hfill \blacksquare

As `\text{match}(L_{1,2,3})` partitions $L_{2,3}$ into X and $U_{2,3}$, we know $U_{2,3}$ is strongly minimal because X is strongly maximal. Thus, Theorem 1 indicates the following steps give an optimal packing of $L_{1,2,3}$:

1. Run `\text{match}(L_{1,2,3})`.
2. Pack each of the I_1-items remaining in U_1 in a separate bin.
3. Pack each pair x_i and y_i from X and Y together in a separate bin.
4. Optimally pack the $U_{2,3}$ using $S^*(U_{2,3})$ bins. This step is NP-hard, in general.
Steps 2 and 3 pack the \(L_1 \)-items and items in \(X \) using \(|L_1|\) bins. Thus, we have

\[
S^*(L_{1,2,3}) = |L_1| + S^*(U_{2,3})
\]

Lemma 5 BFD provides an optimal solution when given only \(I_{1,2} \) (or \(I_{1,3} \)) items.

Proof: In this case, BFD mimics \(\text{MATCH}(L_{1,2,3}) \) and \(U_{2,3} \) consists of only \(I_2 \) (or \(I_3 \)) items. BFD then packs the \(U_{2,3} \) objects two (or three) to a bin. Note that these cases avoid the NP-hard problem of packing mixed \(I_{2,3} \)-items.

\[\]

3.2 After Matching

Although we could apply \(\text{SUM} \) to \(U_{2,3} \), \(\text{SUM} \) can perform quite poorly as packing the \(I_{2,3} \)-items often leaves much empty space in bins. We get a better bound by considering the unpacked \(I_2 \)-items separately. Let \(U_2 \) be the set of \(I_2 \)-items in \(U_{2,3} \); let \(u_2 = |U_2| \) and \(u_{2,3} = |U_{2,3}| \). Packing \(U_2 \) alone requires \(\lfloor u_2/2 \rfloor \) bins. We can pack at most three items in \(U_{2,3} \) to a bin, requiring at least \(\lfloor u_{2,3}/3 \rfloor \) bins. Thus, a lower bound for \(S^*(U_{2,3}) \) is \(\lceil \max(\frac{u_2}{2}, \frac{u_{2,3}}{3}) \rceil \).

In practice, we can improve this bound slightly because we must often pack large \(I_2 \)-items with only one other object. For example, if \(B = 100 \) and \(U_{2,3} = \{27, 30, 34, 38, 42, 45, 48\} \), we can pack neither 45 nor 48 with two other objects. Let \(s_i, s_j \) be the sizes of the smallest \(I_{2,3} \)-items with \(s_i \leq s_j \). We define the \(Z \)-interval (for most cases, is a sub-interval of \(I_2 \)) as,

\[
Z = \begin{cases}
[s_i, \frac{B}{2}] & \text{if } s_i \in I_2 \\
(B - s_i - s_j, \frac{B}{2}) & \text{if } s_i \in I_3
\end{cases}
\]

Lemma 6 says that the \(Z \)-interval contains items which can be packed with at most one other item; hence, it is best to pack them with other \(Z \)-items. Figure 2 depicts the partitioning of \(L_{1,2,3} \)-items into classes.

Lemma 6 It is optimal to pack every two \(Z \)-items together.

Proof: First we show a \(Z \)-item can be packed with at most one other item. If \(s_i \in I_2 \), all we have are \(I_2 \)-items. If \(s_i \in I_3 \), consider packing a \(Z \)-item (of size \(s_z \)), with two items of size \(s_l \) and \(s_m \). Then \(s_z + s_l + s_m \geq s_z + s_i + s_j > B \), exceeding the bin capacity.

Consider any \(Z \)-item. By itself, it forms a set of one big item. If we pack it with the largest remaining \(U_{2,3} \) item (possibly a \(Z \)-item itself), the remaining items in \(U_{2,3} \) are strongly minimal, and Theorem 1 indicates this is optimal.

A new lower bound for \(S^*(L_{1,2,3}) \), \(\text{BIG} \), is obtained by

1. running \(\text{MATCH}(L_{1,2,3}) \) (requiring \(|L_1|\) bins).
2. pairing up and removing the \(Z \)-items from \(U_{2,3} \) (requiring \(|z/2|\) bins).
Figure 2: The set of $L_{1,2,3}$-items are partitioned into X, Y, Z, $U_{2,3}, Z$, and U_1 after running \texttt{match($L_{1,2,3}$)} and determining the Z-interval, where B is the bin size.

3. computing a lower bound for the remaining non-Z-items in $U_{2,3}$:

(a) $m_1 = \lfloor \max(\frac{u_2}{2}, \frac{u_{2,3}}{3}) \rfloor$.

(b) $m_2 = \text{a lower bound computed by using Lueker's functions.}$

Hence, $BIG = |L_1| + \lceil z/2 \rceil + \max(m_1, m_2)$, which is computed by Algorithm \texttt{calc_BIG()}. If there are an odd number of Z-items, we pack the leftover Z-item with the largest non-Z item in $U_{2,3}$ due to Lemma 6. The running time of \texttt{calc_BIG()} is dominated by the call to \texttt{match}, which must sort the $L_{2,3}$-items. Hence, \texttt{calc_BIG} requires $O(n \log n)$ time and is quite practical to run.

```
Algorithm \texttt{calc\_BIG()}
\begin{align*}
&\text{match($L_{1,2,3}$);} \\
&z := \text{the number of $Z$-items from $U_{2,3}$;} \\
&\text{remove the $Z$-items from $U_{2,3}$;} \\
&\text{if ($z$ is odd) then} \\
&\quad \text{discard the largest item from $U_{2,3}$;} \\
&\quad z := z + 1; \\
&\text{end} \\
&u_2 := \text{the number of $I_{2}$-items in $U_{2,3}$;} \\
&u_{2,3} := |U_{2,3}|; \\
&m_1 := \lfloor \max(\frac{u_2}{2}, \frac{u_{2,3}}{3}) \rfloor; \\
&\text{compute a lower bound $m_2$ for $U_{2,3}$ using Lueker's functions in Table 1;} \\
&\text{return $|L_1| + \lceil \frac{z}{2} \rceil + \max(m_1, m_2)$;} \\
&\text{end}
\end{align*}
```
4 Experimental Results and Analysis

To test the effectiveness of our lower bound, \(OB \), we have run simulations on a RS/6000 workstation running AIX 3 using the bin size \(B = 100 \). Samples were generated by the random number generator \texttt{random()} in the standard C library and packed by using the BFD algorithm. The object size is randomly generated over the interval \((a, b] \) for \(0 \leq a < b \leq B \). For each pair of \(a, b \) values, we generated ten instances, where \(n = |I| = 30,000 \). Note that Lueker’s functions are used twice in the computation of \(OB := \max \{ SUM, LLB, BIG \} \):

- computing \(LLB \) when \((a, b) \) is in the regions defined in Table 1.
- computing a lower bound, \(m_2 \), for \(S^*(U_{2,3}) \) (after matching and \(Z \)-items are removed) in \(BIG \).

Because the three components in \(OB \) perform well in different regions on the \(a\)-\(b \) plane, we divide the plane into the three sub-regions,

\[
R_1 = \{ (a, b) : a + b \geq B \}, \\
R_2 = \{ (a, b) : a \geq B/4, \ a + b < B \}, \\
R_3 = \{ (a, b) : a < B/4, \ a + b < B \}.
\]

The three regions (for \(B = 1 \)) are shown in Figure 1. \(R_1 \) corresponds to the triangle \(P_3P_2P_6 \); \(R_2 \) corresponds to the triangle \(P_2P_3P_4 \); and \(R_3 \) corresponds to the polygon \(P_1P_2P_4P_5 \).

The number of times each component in \(OB \) wins in each region is shown in Table 2, where the winner is determined as follows:

\[
\text{if } SUM = OB \text{ then } SUM \text{ wins} \\
\text{else if } LLB = OB \text{ then } LLB \text{ wins} \\
\text{else } BIG \text{ wins}
\]

We simulated 50500 random bin-packing instances in total. In region \(R_1 \), \(BIG \) is the dominant component in \(OB \); in region \(R_2 \), \(LLB \) wins 79.5% and \(BIG \) wins 20.08% of the time; in region \(R_3 \), \(SUM \) is the dominant component in \(OB \). In region \(R_3 \), Lueker’s functions help 136 out of 645 instances when \(BIG \) wins.

Because the actual error rate is unknown, we define the approximate error rates, \(r(SUM) := (BFD - SUM)/SUM \) and \(r(OB) := (BFD - OB)/OB \), where \(BFD \) is the solution obtained by using BFD algorithm. Note that an approximate error rate is an upper bound on the actual error rate. For the rest of the paper, we consider the average performance of \(r(SUM) \) and \(r(OB) \). The averages \(r(SUM) \) and \(r(OB) \) for regions \(R_2 \) and \(R_3 \) are shown in Figure 3 (each data point in the figure represents the average of ten instances). For many cases, the errors caused by poor estimate
Table 2: Winners in OB for the three regions on the a-b plane. There are two components in BIG after matching and removing the Z-items: \(m_1 = \left[\max \left(\frac{4}{3}, \frac{2a}{3} \right) \right] \) and \(m_2 \) is the lower bound for packing $U_{2,3}$ computed by using Luecker’s functions.

of SUM are eliminated by our tighter lower bound OB. The minimum (Min), average (Mean), maximum (Max), and standard deviation (σ) of the averages $r(SUM)$ and $r(\text{OB})$ for the three regions are summarized in Table 3.

Consider the worst-case of $r(SUM)$ and $r(\text{OB})$ in region R_2. The peak value of $r(SUM)$ is 47.06%, while the peak value of $r(\text{OB})$ is 24.39%.

- The worst-case of $r(SUM)$ occurs when the interval is $[34,34]$. If there are $2m$ 3s, then $SUM = [0.34 + 2m]$ and $BFD = S^* = m$. Hence, $r(SUM) = m/0.68m - 1 = 47.06\%$.

<table>
<thead>
<tr>
<th>region</th>
<th>$r(SUM)$</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>$r(SUM)$</td>
<td>0%</td>
<td>26.67%</td>
<td>96.08%</td>
<td>19.5%</td>
</tr>
<tr>
<td></td>
<td>$r(\text{OB})$</td>
<td>0%</td>
<td>0.003%</td>
<td>0.08%</td>
<td>0.01%</td>
</tr>
<tr>
<td>R_2</td>
<td>$r(SUM)$</td>
<td>0%</td>
<td>11.52%</td>
<td>47.06%</td>
<td>9.38%</td>
</tr>
<tr>
<td></td>
<td>$r(\text{OB})$</td>
<td>0%</td>
<td>1.7%</td>
<td>24.39%</td>
<td>3.02%</td>
</tr>
<tr>
<td>R_3</td>
<td>$r(SUM)$</td>
<td>0%</td>
<td>2.26%</td>
<td>19.05%</td>
<td>3.12%</td>
</tr>
<tr>
<td></td>
<td>$r(\text{OB})$</td>
<td>0%</td>
<td>2.03%</td>
<td>19.05%</td>
<td>2.76%</td>
</tr>
</tbody>
</table>

Table 3: The statistics of the average $r(SUM)$ and $r(\text{OB})$.
The worst-case of \(r(OB) \) occurs when the interval is \([33,34]\). If there are \(2m\) 33s and \(2m\) 34s, then \(OB = \lfloor 4m/3 \rfloor\). It is optimal to pack two 33s and one 34s in a bin, yielding \(S^* = m + \lfloor m/2 \rfloor \). However, BFD would pack two 34s and then pack three 33s in a bin, yielding \(BFD = m + \lfloor 2m/3 \rfloor \). Hence, \(r(OB) \approx \frac{\frac{5m}{3}}{\frac{4m}{3}} - 1 = 25\% \). Note that \(BFD/S^* = (m + \lfloor 2m/3 \rfloor) / (m + \lfloor m/2 \rfloor) \approx 10/9 \) and \(OB/S^* = \lfloor 4m/3 \rfloor / (m + \lfloor m/2 \rfloor) \approx 8/9 \).

5 Conclusion

We have presented an efficient algorithm to compute a tighter lower bound \(OB \) for the one-dimensional bin packing problem. \(OB \) is the maximum of \(SUM, LLB \), and \(BIG \), which itself is a lower bound for packing objects of size greater than \(B/4 \). When many large objects exist, \(BIG \) gives a very good estimate on the optimal solution. For many instances \(L \) with large objects \(BFD(L) = OB \), empirically proving that BFD produces optimal packings even when large objects dominate the packing. BFD appears to produce optimal packings for a very wide range of object size distributions.
Figure 3: Average \(r(\text{SUM}) \) and \(r(\text{OB}) \) for \(0 \leq a < b \leq B, a + b < B \).
References

