Integrating Language Models with Speech Recognition

1285 The Electrical Engineering Building
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907-1285
{harper,lhj,cdm,sgsying,pong,pramila,ruxin,bauercar,mcpheter,pellom,helz}@ecn.purdue.edu

Abstract

The question of how to integrate language models with speech recognition systems is becoming more important as speech recognition technology matures. For the purposes of this paper, we have classified the level of integration of current and past approaches into three categories: tightly-coupled, loosely-coupled, or semi-coupled systems. We then argue that loose coupling is more appropriate given the current state of the art and given that it allows one to measure more precisely which components of the language model are most important. We will detail how the speech component in our approach interacts with the language model and discuss why we chose our language model.

1 Introduction

State of the art speech recognition systems achieve high recognition accuracies only on tasks that have low perplexities. The perplexity of a task, roughly speaking, the average number of choices at any decision point. The perplexity of a task is at a minimum when the true language model is known and correctly modeled. A poor language model increases perplexity and lowers performance. To achieve higher recognition accuracy for a given perplexity, it is necessary to improve the acoustic model or utilize more high-level knowledge, such as prosody or semantics. Knowledge sources commonly used in speech understanding are shown in Figure 1. There is good evidence that there is an implicit ordering among these knowledge sources such that one type of information must be available before it makes sense to progress to the next level1.

Although determining the true language model is often very difficult or impossible, approximate models can often be found which have sufficiently low perplexity so that accurate recognition is feasible. A second, potentially more difficult problem is how to integrate an acoustic model with a language model which includes syntactic, semantic, and pragmatic knowledge sources.

The question of how to integrate language models with speech recognition systems is becoming more important as speech recognition technology matures. The level of integration for current and past approaches can be classified into one of three categories: tightly-coupled, loosely-coupled, or semi-coupled systems. A tightly-coupled system is one which integrates all of the knowledge sources for speech into a highly interdependent set of processes which cannot be separated. If we apply software engineering principles to tightly-coupled systems, we observe the following:

1. The language and acoustic models are not separable.
2. It is difficult to evaluate the impact of each of the knowledge sources.
3. For complex domains, the systems tend to be intractable. For example, tightly integrating acoustic/phonetic processing with syntactic processing

1 Prosody can help a word recognizer to rule out word candidates with unlikely stress and duration patterns, but it can also impact syntactic and semantic modules. Therefore, we depict the prosody module as both a high-level and low-level knowledge source.
can yield a system which is orders of magnitude slower than real time.

4. It is difficult to scale up tightly-coupled systems to realistic tasks because the integration of knowledge sources makes the system much larger and more difficult to understand.

A loosely-coupled system is one that isolates the knowledge sources into relatively independent modules which communicate with each other. Again applying software engineering principles, we observe the following properties of loosely-coupled systems:

1. They require the system designer to determine the best way for the modules to communicate. This has proven to be a difficult problem [6, 13, 23].
2. They use level-appropriate information, which should make them more tractable. This avoids the combinatorial explosion caused by making acoustic decisions in the syntactic module, for example.
3. Since the knowledge sources are independent, they should scale up to larger problems better than tightly-coupled systems.
4. It is easier to measure the impact of each of the knowledge sources (which is important given our current level of understanding).
5. The modularity should make them easier to understand, design, and debug. The individual modules can also be tested in a stand-alone fashion.
6. They can easily accommodate more than one task or language by replacing the individual modules.

Semi-coupled systems fall in between the previous two in that a knowledge source can be used to guide a lower level search in the system. In this capacity, the removal of the knowledge source from the system impacts the lower level search, and so the semi-coupled module is not completely independent. Semi-coupled systems tend to be intractable when they combine levels of information from the low-level and high-level categories. Table 1 summarizes this discussion.

In this paper, we argue that loose coupling is more appropriate given the current state of the art and given that it allows one to measure more precisely which components of the language model are the most important. We will begin with a review of the past literature and then detail our approach. We propose a loosely-coupled system which uses a uniform approach to integrate the high-level knowledge sources.

2 Review of Related Work

In a tightly-coupled system, the language and acoustic models are applied simultaneously. CSEL'T’s system [7], based on finite-state language models, falls in this category. Although easily incorporated into a hidden Markov model (HMM), a finite state grammar does not sufficiently constrain the utterances in a spoken language [30]. There are two ways to circumvent this shortcoming and still maintain tight coupling. The first is to modify the HMM to incorporate more powerful language models. For example, the inside-outside algorithm [21, 22] is an extension to HMMs which allows recursive embedding. Whereas a standard HMM can handle only regular grammars, the inside-outside algorithm can process a context-free grammar. The second is to utilize acoustic information in a syntactic processor. For instance, a CYK parser can be modified for acoustic input [28] by exhaustively finding all possible endpoints for every terminal. The modified CYK parser could be thought of as an extension to dynamic time warping speech recognition in much the same way that the inside-outside algorithm could be thought of as an extension to HMM speech recognition.

Although theoretically appealing, the modified CYK parser and the inside-outside algorithm are impractical due to their huge computational costs. Both are $O(n^3)$, where n is the number of input symbols. If these symbols are acoustic measurements (which are typically taken once every 10 ms), then the system is intractable. Lari and Young [22] require 64 transputers for very small problems. The inside-outside algorithm requires a large training set in order to train both acoustic and language probabilities.

Tightly-coupled systems are hampered by their degree of integration. The best acoustic models do not allow a detailed language model, and the best language models are not well suited for the low-level probabilistic pattern matching needed to accurately classify the acoustic patterns. Systems that work adequately for both acoustic and language processing are often intractable for all but simple examples.

A semi-coupled approach combines a language model with an acoustic model in such a way that they cannot be separated procedurally, even though some components can be removed from the system. In a top-down system, for example, the language model is invoked first at a particular decision point, and then the acoustic model is used to select the best of all candidates that are allowed by the language model. In [9, 17, 18, 19], Kita, Kawabata, and Saito use an LR parser to predict phones, which are then verified by a HMM. The phones that make up a word are specified by rules in the grammar. They use a stack splitting method to cope with ambiguity. The acoustic and language components are not entirely separable since the acoustic model receives its focus from the language model.

By far the most successful approach to integrating a language model with an acoustic model has been to embed an N-gram language model into an HMM [2, 29, 31]. The N-gram model assumes that the probability of the current word is a function of the previous N-1 words. This model can easily be integrated because of its simplicity and reduces the perplexity significantly compared to an HMM without a grammar. However, the approach has several disadvantages. Even for small N (i.e., 2 or 3), millions of words of text are required to estimate the N-grams for moderate to large vocabularies. Even so, many of the N-grams are undertrained and extensive smoothing is required. Another disadvantage of N-grams is their task depen-
In a bottom-up system, the acoustical scores are found first, and then the language model is applied to reduce the number of acoustic candidates. This duo of acoustical modeling followed by language modeling can be done at each decision point, or just once, where all acoustical information is extracted prior to utilizing any part of the language model. In the first case, the two modules are semi-coupled; whereas in the second case, the language model is invoked as a postprocessor and is loosely-coupled. For a loosely-coupled bottom-up system to work correctly, all relevant acoustic information must be preserved by the acoustic processor. To be tractable, most superfluous information must be discarded.

Several modern systems utilize the language model as a post-processing step, and so these systems are loosely coupled. In Bates [3], the authors first find the N-best [34, 35, 36] sentences with an HMM, and then apply syntactic and semantic rules using a chart parser. CMU’s Phoenix uses frame based parsing and semantic phrase grammars [39] on single sentences. Individually processing each sentence hypothesis provided by a speech recognizer simplifies the task of the language model, but is inefficient since many sentence hypotheses can be generated with a high degree of similarity. MIT’s Voyager uses LR parsing [43] as a post-processing step with N-best input. N-best input is simple to process, but at the cost of much repeated work. Seneff’s robust parser [37, 38] operates on the most likely sentences and is a post-processor for the speech recognizer.

The most dramatic example of the loosely-coupled systems is the blackboard model employed by Hearsay II [6, 13, 23]. The blackboard model represents each knowledge source as an independent process which is gathering useful information from and dispensing new information to the blackboard. The blackboard consists of a uniform multi-level network, permitting generation and linkage between alternative hypotheses at all levels. Despite the complete modularity of this approach, it has not been as successful as current approaches which use bigram or trigram models. This is partially because acoustic processing has improved with the advent of new techniques. One reason this approach has not come back into favor may be that the blackboard approach is too loosely coupled. When a system is divided into many independent, cooperating processes (as in parallel processing), it is often more difficult to understand, coordinate, and debug the complex interactions among modules.

Table 1: Characteristics of spoken language systems.

<table>
<thead>
<tr>
<th></th>
<th>Tightly-coupled</th>
<th>Semi-coupled</th>
<th>Loosely-coupled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separability</td>
<td>One integrated model for all KS’s</td>
<td>Some KS’s can be removed but not isolated</td>
<td>Each KS is modeled by a stand-alone module</td>
</tr>
<tr>
<td>Inter-module Communication</td>
<td>NA</td>
<td>Typically one way communication</td>
<td>Designer specifies interaction</td>
</tr>
<tr>
<td>Easy to scale</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Computation</td>
<td>Usually intractable for all but very small examples</td>
<td>Tractable for small problems or simple language models</td>
<td>May be tractable for large problems</td>
</tr>
<tr>
<td>Examples</td>
<td>Acoustic-level CYK parser, Inside-inside algorithm</td>
<td>LR parser with HMM phone verification, N-grams</td>
<td>Constraint-based system, Blackboard model as in Hearsay II</td>
</tr>
</tbody>
</table>

3 For N = 2, however, it may be possible to incorporate the N-gram directly into the HMM topology. In this case, the acoustic and language models are tightly coupled.

4 They also use their parser in a generative mode to create sample correct sentences to help estimate a word pair grammar. The word pair grammar is embedded in the HMM.
In contrast, a word graph of word candidates is typically more compact and more expressive than a list of the most likely sentences. To compare N-best and word graph representations [10, 12, 42], we have constructed word graphs from sets of sentence hypotheses. The word graphs provided an 83% reduction in storage, and in all cases they encoded more possible sentence hypotheses than were in the original list of hypotheses. In some cases, the target sentence did not appear in the N-best list but did appear in the word graph. Prosodic information can also be stored in the word graph for higher-level processing.

Clearly, pruning the word graph is important, but in some cases higher level knowledge is more accurate at pruning the word graph. The pruning that is done by the recognizer can be done based on extremely low acoustic scores (i.e., a poor match to a word candidate), a very simple embedded language model (e.g., N-gram), and word-level prosodic information. The more pruning that can be done before or during word graph construction, the less work the language model has to do. Since the language model typically uses some sort of parsing algorithm, the running time for the algorithm will be at least $O(n^3)$, where n is the number of word nodes in the graph.

The second module in our system consists of a constraint-based processing component [10, 12, 42] which is based on an extension to Constraint Dependency Grammar (CDG) parsing as defined by Maruyama [24, 25, 26]. This component employs constraint propagation to prune word graphs. This system is capable of propagating a wide variety of constraints, including syntactic, lexical, semantic, prosodic, and pragmatic constraints. The central data structure for this module is a word graph augmented with parse related information, called a spoken language constraint network (SLCN). An SLCN represents all possible parses for the represented sentence hypotheses in a compact form, and is operated on by constraints.

The third module in our system represents our method for merging the influence of the previous two modules in order to select the best sentence hypothesis. By annotating the word graph with likelihood information from the first module and then pruning it with constraints representing higher level knowledge from the second module, we are using the appropriate information from both to select the best sentence candidates.
the word it modifies. Figure 3 shows the initialization of the SLCN, when a is a determiner with the label DET, fish and offices are nouns with the label SUBJ, and eat and eats are verbs with the label ROOT.

Once the role values are enumerated, constraints are applied to eliminate the ungrammatical role values. A constraint is an if-then rule which must be satisfied by the role values. First, unary constraints (i.e., constraints with a single variable) are applied to each role value for every role. A role value violates a constraint iff it causes the antecedent of the constraint to evaluate to TRUE and the consequent to evaluate to FALSE. A role value which violates a unary constraint is eliminated. For example, DET-nil would be eliminated from the SLCN in Figure 3 given the following constraint⁵:

\[
\begin{align*}
\text{(if (equal (label x) DET)} \\
\text{ (< (position x) (modifiee x))))}
\end{align*}
\]

Figure 4 depicts the SLCN after two additional unary constraints are applied requiring ROOTs to have a nil modifiee and SUBJs to modify words after them.

Figure 4 also illustrates how the SLCN is prepared for the propagation of binary constraints. Binary constraints contain two variables and determine which pairs of role values can legally coexist. Arcs are added to the SLCN to keep track of which pairs of role values can legally coexist given the binary constraints. Roles are joined with an arc iff they can be members of at least one common sentence hypothesis. For example, there is an arc between the roles for a and fish, but there is not an arc between the roles for a and offices in Figure 4.

Each of the arcs has an associated arc matrix, whose row and column indices are the role values from its two roles. Initially, all entries in the matrices are set to 1. Only one of the arc matrices is depicted in Figure 4. After binary constraints are applied, a 0 in the (i, j)th entry of the matrix associated with the arc between nodeᵢ and nodeⱼ indicates that the i-th role value of nodeᵢ is incompatible with the j-th role value of nodeⱼ. Figure 5 shows the state of the SLCN from Figure 4 after the following constraint is propagated:

\[
\begin{align*}
\text{(if (and (equal (label x) DET)} \\
\text{ (equal (label y) SUBJ))} \\
\text{ (equal (modifiee x) (position y)))}
\end{align*}
\]

Following the propagation of binary constraints, the network could contain role values that would never be legal for any sentence hypothesis in the SLCN. For example, in Figure 5, DET-(3,4) would be eliminated by a process called filtering. Filtering removes those role values that are not supported by any sentence hypothesis (see [10, 16]).

In the next section, we will compare the operation of our parser with context-free grammar parsers. We then compare the power and flexibility of the two approaches.

3.1.1 Run-time Properties

1. CFG parsers use production rules (or equivalently, recursive transition networks) to determine whether or not a string of terminals is in the language. Our constraint-based parser, on the other hand, uses a set of constraints. Any type of constraint that can be formulated as an appropriate if-then rule can be used to constrain an SLCN.

2. The best serial running time for a practical CFG parser operating with an ambiguous grammar is \(O(G^2n^3)\) [5], where \(n\) is the number of words in a sentence and \(G\) is the size of the CFG grammar. On the other hand, the serial running time for the SLCN parser is \(O(kn^4)\), where \(k\) is the number of constraints in the grammar and \(n\) is the number of word nodes. In practice, we have found that \(k\) is comparable in size to \(G\) for grammars with the same coverage, and \(G >> n\).

3. CFG parsing has been parallelized by several researchers. For example, Kosaraju’s method [20] using cellular automata can parse CFGs in \(O(n)\) time using \(O(n^2)\) processors. However, achieving CFG parsing times of less than \(O(n)\) has required more powerful and less implementable models of parallel computation than used by [20], as well as significantly more processors (e.g., [33] requires \(O(n^4)\) processors to achieve logarithmic time). In contrast, we have devised a parallelization for the single sentence CDG parser [15, 14] which uses \(O(n^3)\) processors to parse in \(O(k)\) time for a CRCW-PRAM model (Concurrent Read,
Concurrent Write, Parallel Random Access Machine), where \(n \) is the number of words in the sentence and \(k \), the number of constraints, is a grammatical constant, and have simulated it on the MasPar MP-1, a massively parallel SIMD computer with 16K processing elements (achieving an \(O(k + \log(n)) \) running time by using \(O(n^4) \) processors).

4. CFG parsers often build trees for each of the possible parses for a sentence. Because the enumeration of the trees for highly ambiguous sentences can require exponential time, some CFG parsers construct a parse forest (or similar structure). The SLCN constructed by our parser is a forest of parse graphs which is pruned during parsing. It differs from a CFG parse forest in that there are no non-terminals in the graph, only links between terminals, which are assigned sets of labels.

5. The smallest practical size for a CFG parse forest is \(O(G^2 * n^2) \) [5], regardless of how many parses there are for an ambiguous sentence. In contrast, an SLCN has \(O(n^4) \) size\(^6\), and there is no stack or agenda to maintain.

3.1.2 Power and Flexibility

1. The set of languages accepted by a CDG grammar is a superset of the set of languages which can be accepted by CFGs. In fact, Maruyama [24, 25] is able to construct CDG grammars with two roles (degree = 2) and two variable constraints (arity = 2) which accept the same language as an arbitrary CFG converted to Greibach normal form. We have also devised an algorithm to map a set of CFG production rules to a CDG grammar. This algorithm does not assume that the rules are in normal form, and the number of constraints created is \(O(G) \). In addition, CDG can accept languages that CFGs cannot, for example, \(a^n b^n c^n \) and \(w w \) (where \(w \) is some string of terminal symbols).

2. To parse a free-order language like Latin, CFGs require that additional rules containing the permutations of the right-hand side of a production be explicitly included in the grammar [27]. Unordered CFGs do not have this combinatorial explosion of rules, but the recognition problem for this class of grammars is NP-complete. A free-order language can easily be handled by a CDG parser because order between constituents is not a requirement of the grammatical formalism. Furthermore, CDG is capable of efficiently analyzing free-order languages because it does not have to test for all possible word orders.

3. When a CFG parser generates a set of ambiguous parses for a sentence, it cannot invoke additional production rules to further prune the parses. In contrast, in CDG parsing, the presence of ambiguity can trigger the propagation of additional constraints to further refine the parses for a sentence. A core set of constraints that holds universally can be propagated first, and then additional, possibly context dependent, constraints can be used if ambiguity remains. This type of flexibility is easy to achieve, since constraints do not require precompilation into a table or network. This flexibility allows us to experiment with the best way to order constraints. It also allows us to model context by applying constraints in one case, but not another.

4. Tight coupling of prosodic [4] and semantic rules with CFG grammar rules typically increases the size and complexity of the grammar and reduces its understandability. Semantic grammars have been effective for limited domains, but they do not scale up well to larger systems [1]. The constraint-based approach represents a loosely-coupled approach for combining a variety of knowledge sources. It differs from a blackboard approach in that all constraints are applied using the uniform mechanism of constraint propagation. Hence, the designer does not need to create a set of functionally different modules and worry about their interface with the other modules. Constraint propagation is a uniform method which allows us to focus on the best way to order the sources of information impacting the word graph.

5. There are currently a number of probabilistic CFG approaches [8, 40, 41]. We believe that the constraint-based approach must be extended to allow for probabilistic constraints. However, we also believe that context matters a lot for determining the semantic and pragmatic appropriateness of an utterance, hence stochastic methods may not be appropriate at this level. Contextual information may be difficult to capture with stochastic methods because of limited training data.

We believe that our system overcomes many of the problems associated with loosely-coupled systems. Constraint propagation provides a uniform method for applying higher-level knowledge sources to prune a word graph. Because the constraints for each knowledge source can be developed independently, it is not as difficult to add another knowledge source to our parser. In an initial experiment, we constructed a set of syntactic constraints [42] for sentences in the Resource Management corpus [32]. We then determined the effectiveness of these constraints for pruning word graphs constructed from N-best lists of sentence hypotheses (supplied by BBN). The syntactic constraints were effective at pruning many ungrammatical sentence hypotheses from a word graph and limiting the possible parses for the remaining sentences. In a second experiment [12], we demonstrated the flexibility of constraint-based parsing for utilizing a variety of knowledge sources. We developed a second grammar for sentences in the ATIS corpus (Air Travel Information System), which was chosen because of its well-defined semantics. First,
syntactic constraints were added to the Resource Management grammar to demonstrate the ease of adding additional grammar constraints to a previously developed grammar. Then semantic constraints were constructed to further limit ambiguity [12]. An example of a semantic constraint for our parsing example follows:

\[
;; \text{The SUBJ of a \texttt{ROOT} with a semantic feature of \texttt{action} must be \texttt{animate}.}
\]

\[
(\text{if (and (equal (label x) \texttt{SUBJ})
 (equal (label y) \texttt{ROOT})
 (equal (modifier x) (position y))
 (equal (sem\texttt{type} x) \texttt{y} \texttt{+action})
 (equal (sem\texttt{type} x) \texttt{+animate}))}
\]

Semantic constraints were relatively easy to create and incorporate into our parser. In fact they were added to the grammar without modifying a single syntactic rule. Preliminary work with prosodic constraints also suggests that prosodic constraints should be as simple to add to our grammar. Finally, we have developed a mechanism for handling pragmatic constraints [11].

In conclusion, our system separates low-level and high-level information sources into loosely-coupled modules. This requires that we provide an effective method to pass appropriate information between the two modules. A word graph provides that link. By separating the system into loosely-coupled modules, we are able to construct and test the modules independently. Our language module uses a uniform mechanism, constraint propagation, to apply a variety of high-level knowledge sources to prune the word graph. Our constraint-based system allows us to develop constraints for different knowledge sources and add them incrementally. The independence of the constraints also allows us to explore the interactions between these knowledge sources.

4 Acknowledgments

This work was supported in part by Purdue Research Foundation and NSF grant number IRI-9011179. I would also like to thank Carl Mitchell for his critical reading of this paper and the referees for their helpful comments.

References

