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Abstract. We present a data-driven approach to predict the importance
of edges and construct a Markov network for image analysis based on
statistical models of global and local image features. We also address
the coupled problem of predicting the feature weights associated with
each edge of a Markov network for evaluation of context. Experimental
results indicate that this scene dependent structure construction model
eliminates spurious edges and improves performance over fully-connected
and neighborhood connected Markov network.

1 Introduction

Image understanding is one of the central problems in computer vision. Recently,
there has been significant improvements in the accuracy of image understanding
due to a shift from recognizing objects “in isolation” to context based recogni-
tion systems. Such systems improve recognition rates by augmenting appearance
based models of individual objects with contextual information based on pair-
wise relationships between objects. These relationships can be co-occurrence re-
lationships or fine-grained spatial relationships. However, most approaches have
employed brute force approaches to apply context - all objects are first (proba-
bilistically) detected and connected in a massive network to which probabilistic
inference methods are applied. First, this approach is clearly not scalable; but
more important, it suffers from the serious drawback that it treats all pair-wise
relationships in an image as equally important for image analysis. For example,
consider the image shown in Figure 1, where our goal is to identify the unknown
label of the region outlined in red (which we will refer to as the target), given
the labels of other regions in the image. The regions labeled as building tend
to force the label of the target towards building (two building regions co-occur
more often then building and car) and the region labeled car tends to force the
label of the target to be road, since car above road has higher probability in the
contextual model than car above building. In the case of fully-connected models,
the edges from the building regions to the target region outnumber the edges
from other regions to the target and therefore the target is incorrectly labeled as
building. If we had only utilized the relationship from the region associated with
the car and ignored the relationships from other objects to predict the label of
the target, then we would have labeled the target correctly.
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Fig. 1. An example from our dataset showing that all relations are not informative
in fully a connected network and can lead to wrong labeling and how our proposed
method learns “what” edges are important and removes dubious information

Other approaches for applying context to image understanding have consid-
ered fixed structure Markov networks where only nodes corresponding to neigh-
boring segments are linked by an edge [2]. Such approaches are based on the
reasonable assumption that neighboring segments carry significant contextual
information and might be sufficient for recognition. However, such neighbor-
hood based connectivity schemes have two shortcomings: (1) Images are two-
dimensional projection of the three-dimensional world. Two objects which are
far in the 3D world might appear very close in the image plane and therefore
some noisy relationships are included in the network. (2) The assumption that
neighboring segments provide sufficient contextual information is too strong and
does not hold in many cases. For example, in a sunset scene, the relationship
between the appearance of the sky (orange) and the appearance of large bodies
of water is useful for recognition of such bodies of water, even though there can
be intervening land regions between them.

In this paper, we evaluate the importance of individual contextual-constraints
and use a data-driven model for selection of what contextual constraints should
be employed for solving a specific scene understanding problem, and for con-
structing a corresponding Markov-network. Unlike previous approaches that use
fully connected or fixed structures based on neighborhood relationships, our ap-
proach predicts the structure of the Markov network (i.e., selects edges). Selec-
tion of edges is generally dependent on a combination of global and local factors
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such as discriminativeness of regions. However, identifying the variables/factors
associated with predicting the importance of a contextual edge a priori is diffi-
cult. Instead, we take a data driven approach to predict the importance of an
edge, in which scenes similar to a “test” image are identified in the training
dataset and utilized to predict which regions should be linked by an edge in the
Markov network corresponding to the test image - referred to as edge prediction.
Figure 1(a) shows an example of edge prediction from our test dataset. Our ap-
proach appropriately eliminates the edges from most of the building regions to
the target and maintains the edge from the car. This leads to a correct labeling
of the target.

To learn a data-driven(non-parametric) model of edge importance, we have
to compute the importance of edges in the training data-set itself. This requires
evaluating each edge in the training data-set with respect to other edges in the
training data-set. Edges that represent consistent spatial-relationships between
pairs-of-nouns are retained as informative edges and the rest are dropped. If
a single 2D-spatial relationship was sufficient to represent constraints between
a pair of nouns, then extracting consistent edges would be straight-forward.
However, relationships between pairs of nouns are themselves scene-dependent
(due to viewpoint, functional-context, etc.). For example, based on viewpoint, a
road might be either below a car or around a car (see Figure 1(b)). Similarly,
relationships are also based on function-context of an object. For example, a
bottle can either be on the table or below the table based on its function (drinking
vs. trash). Therefore, we cluster the relationships between pairs of nouns based
on scene properties. For each cluster, we then learn feature-weights which reflect
how much each feature of the vector of variables capturing spatial relationships
is important for evaluating constraint/relationship satisfaction. For example, in
a top-down view, road being “around” car is most important. Our approach
not only learns the construction model for Markov networks, but also learns the
feature weights which define how to evaluate the degree to which a relationship
between a pair of nouns is satisfied. Again, instead of explicitly modeling the
factors on which these feature weights depend, we utilize a data driven approach
to produce pseudo-clusters of images and estimate how each contextual edge
should be evaluated (See Figure 1(b)) in each cluster.

The contributions of our paper are: (1) A data driven approach for predict-
ing what contextual constraints are important for labeling a specific image that
uses only a subset of the relationships used in a fully-connected model. The re-
sulting labeling are both more accurate and computed more efficiently compared
to the fully-connected model. (2) A model for predicting how each contextual
edge should be evaluated. Unlike previous approaches, which utilize a single
spatial-relationship between a pair of objects (car above road), we learn a scene
dependent model of context and can encode complex relationships (car above
road from a standing person’s viewpoint, but road around car from a top-down
viewpoint).
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Fig. 2. The figure shows examples of how feature weights are a function of both local
and global factors. Here we show how feature weights depend on function context and
viewpoint. Pairwise features X,Y,O refer to differences in x-coordinates,difference in
y-coordinates and overlap between two regions respectively

2 Related Work

Recent research has shown the importance of context in many image and video
understanding tasks [3, 1, 4–6]. Some of these tasks include segmentation and
recognition. For object recognition, researchers have investigated various sources
of context, including context from the scene [7], objects [4] and actions [22]. Scene
based context harnesses global scene classification such as urban, landscape,
kitchen etc to constrain the objects that can occur in the scene (for example,
a car cannot occur in a kitchen). On the other hand, object based contextual
approaches model object-object co-occurrence and spatial relationships to con-
strain the recognition problem (for example, car above road). Recent research
suggests that the object-object based contextual models outperform the scene
based contextual models [8]. Our work builds upon this and tries to improve how
object-object relationships should be utilized on selected pairs of regions instead
of all region pairs.

In most previous work, relationships are represented by graphical models
such as belief networks [22] or CRFs [4], and the parameters of the graphical
models are learned using graph cuts [23] or max-margin method [24]. One of
the common problems with such approaches is determining “what” edges in the
graphical model should be used for inference. While fully-connected networks
provide the largest number of constraints, they are hard to evaluate and also
include weak edges which can sometimes lead to higher belief entropy. Fixed
structure approaches, such as neighborhood based MRF’s[2], are computation-
ally less demanding but ignore vital long range constraints. Other approaches
such as [9] perform approximate inference by selecting fewer edges based on ob-
ject co-occurrences and discriminability. There has been some work on learning
the structure of a graphical model from the training dataset itself [10]. Here, the
edges are learned/inserted based on the consistency of relationships through-
out the dataset. However, most of the contextual relationships are scene based
and might not hold true for all scenarios. In such situations, structure-learning
approaches tend to drop the informative edges, since they are not consistent
throughout. Instead, we predict the relevant contextual relationships based on
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the scene being analyzed. In our approach, instead of learning a fixed structure
from the training dataset, we learn the space of allowable structures and then
predict a structure for a test image based on its global scene features and local
features.

Our work is similar in spirit to “cautious” collective inference [11, 12]. Here,
instead of using all relationships, the relationships which connect discriminative
regions are used for initial iterations and the number of relationships used are
increased with each iteration. However, the confidence in the classification of
a region is itself a subtle problem and might be scene-dependent. Instead, we
learn a decision model for dropping the edges/relationships based on global scene
parameters and local parameters. Our work is also related to the feature/kernel
weighting problem [13]. However, instead of learning weights of features/kernel
for recognition problems, we select features for a constraint satisfaction problem.
Therefore, the feature weights are on pairwise features and indicate “how” the
edge in a Markov network should be evaluated. This is similar to [1] in which
the prior on possible relationships between pairs of nouns is learned, where each
relationship is based on one pair-wise feature. However, this approach keeps the
priors/weights fixed for a given pair of nouns whereas in our case we learn a
scene-dependent weight function.

3 Overview

Given a set of training images with ground truth labeling of segments, our goal is
to learn a model which predicts the importance of an edge in a Markov network
given the global features of the image and local features of the regions connected
by that edge. We also want to learn a model of image and class-specific pair-
wise feature weights to evaluate contextual edges. Instead of modeling the latent
factors and using a parametric approach for computing edge importance and
feature-weights, we use a data-driven non-parametric approach to model these.
Learning a non-parametric model of edge-importance would require computing
edge importance in the ensemble of Markov networks of the set of training im-
ages. Edge importance, however, itself-depends upon feature weights; feature
weights determine if contextual constraints are satisfied or not. On the other
hand, the feature weights, themselves, depend on the structure of the Markov
networks in the training dataset, since only the images for which nouns are (fi-
nally) linked by an edge should be evaluated to compute the feature weights.
We propose an iterative approach to these linked problems. We fix the feature
weights to estimate the current edge-importance function, followed by fixing the
edge-importance function to re-evaluate feature weights.

Learning. Figure 3 shows an overview of our iterative learning algorithm.
Assume that at some iteration, we have some contextual edges in the training
data-set and feature weights associated with each contextual edge. For example,
in figure 3, out of the six occurrences of road and car, we have contextual edges in
five cases with their corresponding weights. Based on the current feature weights,
we first estimate how likely each edge satisfies the contextual relationship and its
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Fig. 3. Overview of our approach: we propose an iterative approach of what constitutes
the space of important edges and how these edges can be evaluated. Our approach
simultaneously learn the construction model Fe() and differential feature weights β

importance in identifying the labels of the regions. To compute the importance,
we compare labeling performance with and without the edge in the Markov
network. For example, in the first case the relative locations of the car and road
are not coherent with other similar examples in the training dataset (the road
is neither around/overlapping the car nor is it to the right of the car as in the
other cases). Therefore, in this case the edge linking the car and road is not
informative and the Markov network without the edge outperforms the Markov
network with the edge.

After computing the importance of each edge, a few non-informative edges
are eliminated. At this stage, we fix our edge importance function and utilize it
to estimate the new pair-wise feature weights. For computing the new feature
weights, we retrieve similar examples from the training dataset and analyze
which pair-wise features are consistent throughout the set of retrieved samples.
The weights of the consistent features are increased accordingly. In the example,
we can see that for the images with a top-down viewpoint, the overlap feature
becomes important since in the retrieved samples the road region was generally
overlapping the car region. Once the feature weights are updated, we obtain a
new non-parametric model of both edge-importance and feature weights. This
new model is then used to evaluate the edge importance and drop further edges
and recompute feature weights.

Inference. The inference procedure is illustrated in Figure 4. An image is
first segmented into regions. For segmentation, we use the SWA algorithm [14]
and stability analysis for estimating the stable segmentation level [15]. We then
predict the importance of each edge based on global features and local features
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Fig. 4. Inference algorithm for our approach: Using the global and local features com-
puted from the segmentation, we first predict the structure of the Markov network by
matching possible edges to edges in the training set (locally weighted regression). We
also estimate the feature weights β for each edge in the Markov network. Finally we
use message passing to predict the labels

of the regions connected by the edge. Based on the importance of edges, we
construct a Markov network for inference. For each edge, we also compute feature
weights that should be utilized to evaluate context on that edge. The labels are
then predicted using the message passing algorithm over the constructed Markov
network with the estimated feature weights.

4 Mathematical Formulation

We now more formally describe our approach to learn “what” edges consti-
tute the space of efficient networks and “how” to evaluate these edges in those
networks. Our motivation is that not all edges in the complete Markov net-
work are informative. So, we want to include in our Markov network only those
edges which are generally informative, given the image, and also predict the
corresponding feature weights which describe how to evaluate the constraints
specified by the selected edges. Formally, our goal is to learn two functions from
training data: Fe(Gt, Rti, Rtj) and β(Gt, nti, n

t
j); where Fe() evaluates whether

there should be an edge between regions i and j of image t and β() represents
the vector of pair-wise feature weights. The function Fe() depends on the global
scene features Gt and the local features of region i and j represented by Rti and
Rtj . On the other hand, the feature weights depend on the global scene features
and the pair of noun classes for which the pair-wise features are being evaluated.
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The functions are learned based on a cost function, which minimizes the
cost of labeling in the training dataset. The task is to predict all the nouns in an
image, and therefore our cost function can be formulated as follows: Suppose our
vocabulary consists of m object-classes, and let yti be an m-dimensional vector
which represents the ground-truth annotation for region i in training image t.
Function fA(Ri) evaluates the appearance of the region by comparing it with the
appearance models of the m labels and returns an m-dimensional vector with
appearance distance scores. The cost function is then formulated as:

C =
∑
t

(
∑
i

ytifA(Ri) +
∑

(j,k)∈Λt

ytjkFC(Gt, Rjk)) (1)

In this cost function, ytjk is a m2 dimensional vector which represents pair-

wise ground truth annotations and FC is a m2 dimensional-vector representing
how well the pair-wise features Rjk match the contextual parameters for all m2

pairs of labels. Λt represents the set of chosen edges for an image t based on
function Fe and, therefore, we define Λt as: {(j, k) : Fe(Gt, Rti, Rtj) > α}.

Contextual evaluation also requires feature-weighting, since all features are
not equally important for contextual relationship evaluation. For example, while
a difference in y-coordinate is important in evaluation of the contextual rela-
tionship between sky and water, the differences in x-coordinate is irrelevant. As
discussed previously, these feature weights depend not only on the pair of nouns
but also the global features of the scene. Therefore, if the function fnj ,nk

(Gt, Rjk)
represents the (nj , nk)th element of FC , we can write it as:

fnj ,nk
(Gt, Rjk) =

L∑
l=1

βlnj ,nk
(Gt)Clnj ,nk

(Gt, Rljk) (2)

where βl represents the weight of the lth pair-wise feature and is dependent
on global scene features and the pair of nouns, and Cl is the context model
which measures how well the lth dimension of a pairwise feature Rjk satisfies
the constraint learned for that dimension for the given pair of nouns.

Intuitively, equation 1 states that the cost can be minimized if: (1) We sum
over the contextual constraints that have low cost, that is, Λt should only in-
clude informative edges. (2) the learned feature weights should be such that the
dimensions which represent consistent relationships should have higher weight
as compared to the other dimensions. Our goal is to minimize equation (1) with
respect to all possible graphs in all training images and all possible weights. At
that minima, we have a subset of edges for all the images in the training data-set
and feature-weights at each edge. We then learn a non-parametric representation
of Fe and β based on the importance and weights estimated for the edges in the
training dataset. As we can see, the estimation of β in training images depends
on edges that are important in the training images and the evaluation of the
importance of edges depends on β. Therefore, we employ an iterative approach
where we fix β and learn the function Fe and in the next step, based on the
importance of edges in the training dataset, we re-estimate β.
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4.1 Iterative Approach

Learning Fe: Given feature-weights β, we predict whether an edge is informa-
tive or not. The information carried by an edge (representing potential contextual
constraints on the pair-wise assignment of nouns to the nodes at the two ends of
the edge) is a measure of how important that generic edge type is for inferring
the labels associated with the nodes connected by the edge. The information
carried in an edge depends on both global and local factors such as viewpoint
and discriminability. Instead, of discovering all the factors and then learning a
parametric-function; we use a non-parametric representation of the importance
function. However, we still need to compute the importance of each edge in the
training data-set.

To compute the importance of an edge, we use the message-passing algorithm.
The importance of an edge is defined as how much the message passing through
the edge helps in bringing the belief of nodes connected by the edge towards
their goal belief (ground-truth). Suppose that the goal beliefs at node i and j
are yi and yj respectively. The importance of the edge between i to j is defined
as:

I(i↔ j) =
1

iter

iter∑
k=1

(yi.b
k
Ni
− yi.bkNi−(i,j)) + (yj .b

k
Nj
− yj .bkNj−(i,j)) (3)

where bkNi
is the belief at node i at iteration k computed using messages from all

the nodes (fully-connected setting); bkNi−(i,j) is the belief at node i at iteration

k computed using messages from all the nodes except i ↔ j (edge-dropped
setting). iter is the total number of iterations of message passing algorithm.

Using this approach, the importance of each edge is computed based on the
local message passing algorithm. It does not take into account the behavior of
other similar edges (similar global scene features and connecting similar local
regions) in the training dataset. For example, in a particular image from the
set of beach scenes, the edge between sky and water might not be important;
however if it is important in most other beach images, we want to increase
the importance of that particular edge so that it is not dropped. We therefore
update the importance of an edge by using the importance of the edges which
have similar global and local features. This is followed by an edge dropping
step, where the edges with low importance are dropped randomly to compute
an efficient and accurate networks for the training images.

Learning β: Given the importance function of the edges Fe(), we estimate
β. As stated above, we use locally weighted regression for estimating β, therefore
we need to estimate individual feature weights for all edges. Given the cost
function in equation 1, a gradient descent approach is employed to estimate the
feature weights of edges. We obtain the gradient as:

∂C
∂βlnj ,nk

= Cl(Gt, Rjk) (4)
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where βlnj ,nk
is the weight of lth feature for edge (j, k). The above equation

states that for a given pair of nouns, if the lth dimension of pairwise feature is
consistent with the lth dimension of pairwise features from similar images, then
the value of βlnj ,nk

should be increased. Therefore, the value of β is updated at

each step using the gradient above and then normalized (
∑
l β

l = 1). Intuitively,
this equation evaluates which contextual relationship is satisfied on average for
a pair of nouns and increases it weight. For example, between sky and water the
above relationship is always satisfied where as left/right has high variance (In
images sky is sometimes on left and sometimes on right of water). Therefore,
this equation increases the weight of dY (measuring above) and decreases the
weight of dX (measuring left).

4.2 Inference

Given a segmentation of an image, we construct a Markov network for the image
using the function Fe. For this construction, we first compute the global features,
G, of the image and the local features of every region in the segmentation. A
potential edge in the network is then predicted using simple locally weighted
regression:

Fe(G,Rj , Rk) =
∑
t,jt,kt

W (G,Gt, Rj , Rjt , Rk, Rkt)M(jt ↔ kt) (5)

where W () is the weight function based on distances between local and global
features of training and test data and M() is an indicator function which predicts
whether the edge was retained in the training data or not. The feature weights are
also computed using locally weighted regression. The labels are then predicted
using the message passing algorithm over the constructed Markov network with
the estimated feature weights.

5 Experimental Results

We describe the experiments conducted on a subset of the LabelMe [19] dataset.
We randomly selected 350 images from LabelMe and divided the set into 250
training and 100 test images. Our training data-set consists of images with seg-
mentations and labels provided 1. We used GIST features [18] as global features
for scene matching. For appearance modeling, we use Hoeim’s features [17] to-
gether with class specific metric learning used by [20]. The pairwise relation
feature vocabulary consists of 5 contextual relationships 2. In all experiments,
we compare the performance of our approach to a fully-connected Markov net-
work and a neighborhood based Markov network. We measure the performance
of our annotation result as the number of pixels correctly labeled divided by
total number of pixels in the image, averaged over all images.

1 grass, tree, field, building, rock, water, road, sky, person, car, sign, mountain, ground,
sand, bison, snow, boat, airplane, sidewalk

2 Contextual relations - above/below, left/right, greener, bluer, brighter
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Fig. 5. A few qualitative examples from the LabelMe dataset of how constructing the
network structure using our approach leads to an efficient Markov structure which also
improves labeling performance

In the training phase, we run inference on each training image and utilize
the ground truth to evaluate the importance of each edge. At each iteration, a
few unimportant edges are dropped and feature weights are re-estimated. Fig-
ure 6 (a) show examples of how our approach captures the scene dependency
of F(e) and β respectively. Fig 6 (b) shows the percentage improvement over a
fully-connected network and a neighborhood based network with each iteration.
The figure clearly shows that dropping edges not only provides computational
efficiency, but also improves the matching scores in training due to the removal
of spurious constraints or constraints which link regions which are not discrimi-
native.

On test images, we first predict the Markov network using the learned F(e)
and then utilize β to perform inference. Figure 7 show the performance of our
approach compared to a fully-connected and a neighborhood connected Markov
network on the LabelMe dataset at different thresholds of F(e). A higher thresh-
old corresponds to dropping more edges. The values in parenthesis on the thresh-
old axis shows the average percentage of edges dropped at that particular thresh-
old. We also compared the performance of our approach to publicly available
version of texton-boost (without CRF) on our LabelMe dataset and it yields ap-
proximately 50% as compared to 59% by our approach. It should be noted that
this is similar to the performance of the local-appearance based model used in
our approach. Therefore, our approach should also provide considerable improve-
ment over the CRF version of the texton-boost as well. Above the performance
chart, we show “what” edges are dropped at a given threshold. We also compare
our approach to the exemplar based approach similar to [21] where the labels
are transferred based on the edge matches in the training dataset.

Figure 5 shows representative examples where our approach performed better
than the fully-connected network. The second column of the figure shows the
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Fig. 6. (a) Scene dependency of F(e) and β. In the first case the edge between sidewalk
and road is informative only when the car is parked or is nearby it. In the second case,
in scenes like beaches, both x and y are important features of context; however when
the viewpoint is such that water occupies most of the lower space, the importance of
x decreases. (b) The graphs show the % improvement over the fully-connected and
neighborhood based Markov network as the training continues

Fig. 7. The graph shows the improvement of our algorithm over the fully-connected
network and neighborhood based network on the LabelMe dataset with an example of
graph structures at different thresholds of F(e). The values in the parentheses shows
the percentage of edges dropped at a given threshold of F(e)

result obtained using just the appearance model (likelihood term). The third
column shows our network compared to a fully-connected Markov network. The
label marked in red is the result obtained using the fully-connected network
while the label in green is the result obtained using our approach. In the last
column, we show the regions of interest (where our approach dropped spurious
edges which led to improvement in performance). In the first example, if a fully-
connected network is utilized, the label of the red car on the right side of road is
forced to signboard (by other car). This is because the car-signboard relationship
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Fig. 8. (a) An example where our approach removed spurious edges and improved label-
ing performance. (b) Labeling accuracy of our algorithm compared to fully-connected
and neighborhood connected Markov networks on the MSRC dataset with examples of
graph structures at different thresholds of F(e)

is stronger than car-car relation in the current spatial configuration and the
bad appearance model predicts signboard as a more likely label. On the other
hand, when the spurious edge is dropped, the labeling improves and the region
is correctly labeled as a car. Similarly in the second example, we observe that
the sidewalk is labeled as road in the fully-connected network (due to strong
appearance likelihood and presence of buildings). On the other hand, the region
labeled as person boosts the presence of sidewalk (people walk on sidewalks) and
when spurious edges from buildings are dropped by our approach the labeling
improves and the region is correctly labeled as sidewalk.

We additionally tested our algorithm on the MSRC dataset. The training and
testing data of the MSRC dataset is the same as in [16]. The dataset has 21 object
classes. It should be noted that MSRC is not an ideal dataset since the number
of regions per image is very low and therefore there are not many spurious
edges that can be dropped. However, this experiment is performed in order to
compare the performance of our baseline to other state-of-the-art approaches.
Figure 8(a) shows the performance of our algorithm compared to fully-connected
and neighborhood connected networks on the MSRC dataset. Our results are
comparable to the state of the art approaches based on image segmentation
such as [16]. Figure 8(b) shows an example of one case where dubious information
is passed along edges in the fully-connected network leading to wrong labeling.
Region 7, in the fully connected network, was labeled as building. The is because
the building-building and bike-building contextual relationship is stronger than
bike-bike relationship. But when the link of the bike region with regions labeled
as building was removed through our edge prediction, it was correctly labeled as
bike.
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