
1

Project 2 - Stereo

• Pyramid construction

• Mutliresolution disparity estimation
– gray level correlation

– disparity estimation

– disparity interpolation

– disparity map expansion

• Visualization

Pyramid construction

• Given a stereo pair of 256x256 images

• Construct a 3 level pyramid containing
images of size 256x256, 128x128, 64x64

2

Correlation at a given level

• Let D be an estimated disparity image computed
from the previous stage of the multiresolution
algorithm
– at first stage, this image is not available, so can be

regarded as uniformly 0.

• Correlation algorithm scans through entire left
image (ignoring first and last rows and columns)
and computes the correlation of the 3x3
neighborhood around Leftlevel(i,j) with the 3x3
neighborhoods in an interval of points around
Rightlevel(i, j +D(i,j))).

Level 0

• At level 0, the interval considered when matching
Leftlevel(i,j) to the right image are the
neighborhoods centered around the pixels
Rightlevel(i, j) through Rightlevel(i, j+maxdis/4)
– maxdis is the maximum disparity expected to occur in

the original full resolution image.
• Since we have a 3 level pyramid the disparity range at level 0

would be [0,maxdis/4]

3

Levels 1-2
• At levels 1 and 2, we have to match Leftlevel(i,j)

against an interval “centered” around
Rightlevel(i,j+DIS(i,j))
– DIS(i,j) might be slightly inaccurate

– expansion of pyramid adds a few pixel uncertainty
in disparity

– In any event, do not allow negative disparities

Levels 1-2
• Example: For Left1 (10,20) our disparity

estimate is 10 pixels
– we “center” our search around the pixel

Right1(10,30), the predicted match

– if we allow 3 pixel error in disparity estimate
and compute the correlation scores with
[Right1(10,27), Right1(10,33)]

• So, all the correlation scores for a row in the left
image can be stored in a 6xCOL matrix, where COL
is the number of columns in the image at level i.

• If any of the 6 entires would arise from a negative
disparity, we replace the correlation with maxint.

4

A data structure
• Processing is done one row at a time.

• Goal: Choose a disparity for each column
– includes a “no disparity” choice for possibly

occluded points, with penalty score

– disparities must satisfy ordering constraint:
• j+ DIS(j) < (j+1) + DIS(j+1)

– total correlation score must be minimized
Disparity in

Correlation
score matrix

Disparity out

Disparity estimation

• Assign a disparity to each pixel in a row of
the left image
– enforce left-to-right ordering

– allow for “no-match”

– solve using dynamic programming

5

Dynamic programming - when
recursion hurts

• Recursive algorithms can sometimes be
VERY inefficient

• Fibonacci number

function fib(n)

begin

if (n-0) or (n=1) then fib := 1

else fib := fib(n-1) + fib(n-2)

end

Recursive Fibonacci

• For the recursive algorithm T(n) = T(n-1) +
T(n-2), which is the same recurrence relation
as the sequence itself
– so, T(n) is exponential

– F6 is computed once, F5 once, F4 twice, F3 3x,
F2 5x ... F6

F5

F3F4

F2

F2F3 F2

F2

F4

F2

F1

F1 F1

F3

6

Fibonacci
• If the compiler could maintain a table of

previously computed Fibonacci numbers,
then it could avoid the recursive calls for
previously solved subproblems

• This would give us a linear algorithm

• Another time versus space trade-off
– keep large tables of partial results that must be

used over and over to solve a problem

– only compute each partial result once - when it
is first referenced.

A real example - matrix
multiplication

• Suppose we have four matrices A (50x10),
B(10x40), C(40x30) and D(30x5) and we want to
compute ABCD. There are five ways to do this:
1) A((BC)D) - requiring 16000 multiplication (12000 to

compute the 10x30 matrix BC, 1500 more to compute
the 10x5 matrix BCD and then 2500 more to compute
ABCD)

2) A(B(CD)) - 10,500

3) (AB)(CD) - 36,000

4) (((AB)C)D) - 87,500

5) (A(BC))D - 34,500

7

Matrix multiplication
• So, there can be a BIG difference in the amount of work it

takes to do the multiplication

• But the number of possible orderings grows quickly with
n, the number of matrices

• Suppose last multiplication performed is
– (A1A2…Ai)(Ai+1Ai+2…An)

– There are T(i) ways to compute (A1A2…Ai)

– There are T(n-i) ways to compute (Ai+1Ai+2…An)

– There are n-1 places we could have cut the problem into two

• Solution is Catalan numbers, which grow exponentially

∑
−

=

−=
1

1

)()()(
n

i

inTiTnT

A dynamic programming solution
• Let ci be the number of columns in matrix Ai

– then Ai has ci-1 rows

– A0 has c0 rows

– required for the multiplication to be valid

• Let mL,R be the number of multiplications needed
to multiple ALAL+1…AR-1AR

– mL,L = 0

– Suppose the LAST multiplication performed is

(ALAL+1…Ai)(Ai+1 …AR-1AR)

Then the number of multiplications performed is

mL,i + mi+1,R + cL-1cicR

8

A dynamic programming solution
• Define ML,R to be the number of multiplications

required in an optimal ordering of matrices.

• This expression translates directly into a recursive
program
– that would run forever

• But there are only a total of about n2/2 possible
values for the ML,R that EVER need to be
computed
– if R-L = k, then the only values needed in the

computation of ML,R are Mx,y with y-x < k

}{min 1,1,, RiLRiiL
RiL

RL cccMMM −+≤≤
++=

The program

for L = 1 to n

ML,L = 0;

for k = 1 to n-1 {k is R-L}

for L = 1 to n-k

begin

R = L + k

ML,R = maxint

for i = L to R-1

 M’ = MLi + Mi+1,R + cL-1cicR

 if M’ < M L,R then ML,R = M’

M

L

R

0

0

0

0

4321

3

2

1

4

A1 = 3x5,A2 = 5x8, A3 = 8x4, A4 = 4x3

120

160

96

220

256

9

First due date

• April 22 - written description of dynamic
programming solution you will use in your
implementation
– Must include the optimization formulae and a

small hand drawn example showing how it will
work.

Disparity map interpolation and
expansion

• Double the size of the disparity map by
assigning Dlevel(i,j) to Dlevel+1(2i,2j).

• Along each row of Dlevel +1 fill in blanks
using linear interpolation

