Project 2 - Stereo

- Pyramid construction
- Mutliresolution disparity estimation
- gray level correlation
- disparity estimation
- disparity interpolation
- disparity map expansion
- Visualization

Pyramid construction

- Given a stereo pair of 256×256 images
- Construct a 3 level pyramid containing images of size $256 \times 256,128 \times 128,64 \times 64$

Correlation at a given level

- Let D be an estimated disparity image computed from the previous stage of the multiresolution algorithm
- at first stage, this image is not available, so can be regarded as uniformly 0 .
- Correlation algorithm scans through entire left image (ignoring first and last rows and columns) and computes the correlation of the 3×3 neighborhood around Left $_{\text {level }}(\mathrm{i}, \mathrm{j})$ with the 3×3 neighborhoods in an interval of points around $\left.\operatorname{Right}_{\text {level }}(\mathrm{i}, \mathrm{j}+\mathrm{D}(\mathrm{i}, \mathrm{j}))\right)$.

Level 0

- At level 0 , the interval considered when matching $\operatorname{Left}_{\text {level }}(\mathrm{i}, \mathrm{j})$ to the right image are the neighborhoods centered around the pixels $\operatorname{Right}_{\text {level }}(\mathrm{i}, \mathrm{j})$ through $\operatorname{Right}_{\text {level }}(\mathrm{i}, \mathrm{j}+$ maxdis/4)
- maxdis is the maximum disparity expected to occur in the original full resolution image.
- Since we have a 3 level pyramid the disparity range at level 0 would be [0,maxdis/4]

Levels 1-2

- At levels 1 and 2, we have to match $\operatorname{Left}_{\text {level }}(i, j)$ against an interval "centered" around Right $_{\text {level }}(\mathrm{i}, \mathrm{j}+\mathrm{DIS}(\mathrm{i}, \mathrm{j}))$
- DIS(i, j) might be slightly inaccurate
- expansion of pyramid adds a few pixel uncertainty in disparity
- In any event, do not allow negative disparities

Levels 1-2

- Example: For $\operatorname{Left}_{1}(10,20)$ our disparity estimate is 10 pixels
- we "center" our search around the pixel $\operatorname{Right}_{1}(10,30)$, the predicted match
- if we allow 3 pixel error in disparity estimate and compute the correlation scores with [$\left.\operatorname{Right}_{1}(10,27), \operatorname{Right}_{1}(10,33)\right]$
- So, all the correlation scores for a row in the left image can be stored in a $6 x$ COL matrix, where COL is the number of columns in the image at level i.
- If any of the 6 entires would arise from a negative disparity, we replace the correlation with maxint.

A data structure

- Processing is done one row at a time.
- Goal: Choose a disparity for each column
- includes a "no disparity" choice for possibly occluded points, with penalty score
- disparities must satisfy ordering constraint:

$$
\cdot \mathrm{j}+\operatorname{DIS}(\mathrm{j})<(\mathrm{j}+1)+\operatorname{DIS}(\mathrm{j}+1)
$$

- total correlation score must be minimized

Disparity in
Correlation score matrix

Disparity out

Disparity estimation

- Assign a disparity to each pixel in a row of the left image
- enforce left-to-right ordering
- allow for "no-match"
- solve using dynamic programming

Dynamic programming - when recursion hurts

- Recursive algorithms can sometimes be VERY inefficient
- Fibonacci number
function fib(n)
begin
if $(\mathrm{n}-0)$ or $(\mathrm{n}=1)$ then fib $:=1$
else fib $:=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
end

Recursive Fibonacci

- For the recursive algorithm $T(n)=T(n-1)+$ $T(n-2)$, which is the same recurrence relation as the sequence itself
- so, $T(n)$ is exponential
- F6 is computed once, F5 once, F4 twice, F3 3x,

Fibonacci

- If the compiler could maintain a table of previously computed Fibonacci numbers, then it could avoid the recursive calls for previously solved subproblems
- This would give us a linear algorithm
- Another time versus space trade-off
- keep large tables of partial results that must be used over and over to solve a problem
- only compute each partial result once - when it is first referenced.

A real example - matrix multiplication

- Suppose we have four matrices A (50x10), $B(10 x 40), C(40 x 30)$ and $D(30 x 5)$ and we want to compute ABCD . There are five ways to do this:

1) $\mathrm{A}((\mathrm{BC}) \mathrm{D})$ - requiring 16000 multiplication (12000 to compute the 10×30 matrix $\mathrm{BC}, 1500$ more to compute the 10×5 matrix BCD and then 2500 more to compute ABCD)
2) $A(B(C D))-10,500$
3) $(\mathrm{AB})(\mathrm{CD})-36,000$
4) $(((\mathrm{AB}) \mathrm{C}) \mathrm{D})-87,500$
5) $(\mathrm{A}(\mathrm{BC})) \mathrm{D}-34,500$

Matrix multiplication

- So, there can be a BIG difference in the amount of work it takes to do the multiplication
- But the number of possible orderings grows quickly with n , the number of matrices

$$
T(n)=\sum_{i=1}^{n-1} T(i) T(n-i)
$$

- Suppose last multiplication performed is
$-\left(A_{1} A_{2} \ldots A_{i}\right)\left(A_{i+1} A_{i+2} \ldots A_{n}\right)$
- There are T(i) ways to compute $\left(\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{i}}\right)$
- There are $T(n-i)$ ways to compute $\left(A_{i+1} A_{i+2} \ldots A_{n}\right)$
- There are $n-1$ places we could have cut the problem into two
- Solution is Catalan numbers, which grow exponentially

A dynamic programming solution

- Let c_{i} be the number of columns in matrix A_{i}
- then A_{i} has c_{i-1} rows
- A_{0} has c_{0} rows
- required for the multiplication to be valid
- Let $m_{L, R}$ be the number of multiplications needed to multiple $A_{L} A_{L+1} \ldots A_{R-1} A_{R}$
$-m_{L, L}=0$
- Suppose the LAST multiplication performed is

$$
\left(\mathrm{A}_{\mathrm{L}} \mathrm{~A}_{\mathrm{L}+1} \ldots \mathrm{~A}_{\mathrm{i}}\right)\left(\mathrm{A}_{\mathrm{i}+1} \ldots \mathrm{~A}_{\mathrm{R}-1} \mathrm{~A}_{\mathrm{R}}\right)
$$

Then the number of multiplications performed is

$$
m_{L, i}+m_{i+1, R}+c_{L-1} c_{i} c_{R}
$$

A dynamic programming solution

- Define $\mathrm{M}_{\mathrm{L}, \mathrm{R}}$ to be the number of multiplications required in an optimal ordering of matrices.

$$
M_{L, R}=\min _{L \leq i \leq R}\left\{M_{L, i}+M_{i+1, R}+c_{L-1} c_{i} c_{R}\right\}
$$

- This expression translates directly into a recursive program
- that would run forever
- But there are only a total of about $\mathrm{n}^{2} / 2$ possible values for the $\mathrm{M}_{\mathrm{L}, \mathrm{R}}$ that EVER need to be computed
- if $\mathrm{R}-\mathrm{L}=\mathrm{k}$, then the only values needed in the computation of $\mathrm{M}_{\mathrm{L}, \mathrm{R}}$ are $\mathrm{M}_{\mathrm{x}, \mathrm{y}}$ with $\mathrm{y}-\mathrm{x}<\mathrm{k}$

The program

$$
\mathrm{A}_{1}=3 \times 5, \mathrm{~A}_{2}=5 \times 8, \mathrm{~A}_{3}=8 \times 4, \mathrm{~A}_{4}=4 \times 3
$$

for $\mathrm{L}=1$ to n

$$
\mathrm{M}_{\mathrm{L}, \mathrm{~L}}=0
$$

for $k=1$ to $n-1 \quad\{k$ is $R-L\}$ for $\mathrm{L}=1$ to $\mathrm{n}-\mathrm{k}$ begin
$\mathrm{R}=\mathrm{L}+\mathrm{k}$
$\mathrm{M}_{\mathrm{L}, \mathrm{R}}=$ maxint
for $\mathrm{i}=\mathrm{L}$ to $\mathrm{R}-1$
$M^{\prime}=M_{L i}+M_{i+1, R}+c_{L-1} c_{i} c_{R}$
L if $\mathrm{M}^{\prime}<\mathrm{M}_{\mathrm{L}, \mathrm{R}}$ then $\mathrm{M}_{\mathrm{L}, \mathrm{R}}=\mathrm{M}^{\prime}$

First due date

- April 22 - written description of dynamic programming solution you will use in your implementation
- Must include the optimization formulae and a small hand drawn example showing how it will work.

Disparity map interpolation and expansion

- Double the size of the disparity map by assigning $D_{\text {level }}(i, j)$ to $D_{\text {level+1 }}(2 i, 2 j)$.
- Along each row of $\mathrm{D}_{\text {level }+1}$ fill in blanks using linear interpolation

