Time varying image analysis
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= Motion detection

= Motion estimation

= Egomotion and structure from motion
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The problems
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s Visual surveillance

— stationary camera watches a workspace -find moving
objects and alert an operator
— moving camera navigates a workspace - find moving
objects and alert an operator
= Image coding
— use image motion to perform more efficient coding of
images
= Navigation

— camera moves through the world - estimate its trajectory

» use this to remove unwanted jitter from image sequence - image
stabilization and mosaicking

» use this to control the movement of a robot through the world
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M otion detection
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= Framedifferencing

— subtract, on a pixel by pixel basis, consecutive frames in
motion sequence

either motion or changes in illumination
= Problems
— noise in images can give high differences where there is

motion
» compare neighborhoods rather than points

changing image intensities over short time periods
» motion detected only at boundaries
» requires subsequent grouping of moving pixels into objects
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— as objects move, their homogeneous interiors don’t result i

— high differences indicate change between the frames dug to

M otion detection
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= Background subtraction

— create an image of the stationary background by averaging a long
sequence
» for any pixel, most measurements will be from the background

» computing the median measurements, for example, at each pixel, will with
high probability assign that pixel the true background intensity - fixed
threshold on differencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture of
Gaussians to set of intensities and assuming large population is the
background - adaptive thresholding to find foreground pixels

— difference a frame from the known background frame
» even for interior points of homogeneous objects, likely to detect a difference

» this will also detect objects that are stationary but different from the
background

» typical algorithm used in surveillance systems

= Motion detection algorithms such as these only work if the camerais
stationary and objects are moving against a fixed background
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Example
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Example
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Motion estimation - optic flow
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= Optic flow isthe 2-D velocity field induced in an
Image due to the projection of moving objects onto
theimage plane

= Three prevalent approaches to computing optic flow:

— token matching or correlation

» extract features from each frame (gray level windows, edge
detection)

» match them from frame to frame

— gradient techniques
» relate optic flow to spatial and temporal image derivatives

— velocity sensitive filters
» frequency domain models of motion estimation
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A 1-d gradient technique
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= Suppose we have a 1-D image that changes over time due to a
translation of the image

= Suppose we also assume that the image function is, at least over small
neighborhoods, well approximated by a linear function.

— completely characterized by its value and slope

= Can we estimate the motion of the image by comparing its spatial
derivative at a point to its temporal derivative?

— example: spatial derivative is 10 units/pixel and temporal
derivative is 20 units/frame

I(x) —| then motion is (20 units/frame) / (10 units/pixel) = 2 pixels/frame

DTN

X
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Gradient techniques
... 1 | 1§ I | | Ioffil

m Assume I (x,y,t) isacontinuous and differentiable
function of space and time

= Suppose the brightness pattern islocally displaced

by a distance dx, dy over time period di.

— this means that as the time varying image
evolves, the image brightness of points don’t
change (except for digital sampling effects) as
they move in the image

—I(x,y,t) = I(x + dx, y + dy, t + dt)
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Gradient techniques
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s Weexpand | in aTaylor series about (x,y,t) to obtain
[ (x+dx, y+dy,t+dt) =1(x,y,t)+dxol /0x+dydl /dy + dtdl /ot

+ higher order terms

di /dt =[1(x+dx,y+dy,t+dt)-1(xy,t)]/dt =
(dx/dt)(al /0x) + (dy/dt)(al /dy) +0l /ot

— valid only if temporal change is due entirely to motion
= Canrewritethisasdl/dt = G,u+ Gy + G, = 0. The G’s are derivatives
measured from the image sequence, and u and v are the unknown optic
flow components in the x and y directions, respectively
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Motion constraint line
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vV A

Gu+GyVv+G =0

v

= SO, the spatial and temporal derivatives at apoint in the
image only provide alinear constraint on the optic flow
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Gu+GV+G =0 Motion constraint line
I EEEEa

= If G, and G, are small, then motion
information cannot be accurately
determined

— places in the image where the gray level
Is almost constant are difficult places tom i
estimate motion
» G, will also be small in these places l
m If G, =0,then-G,=Gv, sothat v is
determined, but u is unknown 1
—1If G, = 0, we have a horizontal edge, so
we can’t measure its motion along the
edge
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Motion constraint line
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= |f H and L denote the gradient and level directions at a
pixel then
- H =tan-1 G/G,
— L is perpendicular to H
-G =0

= Then G = -G,dH/dt, where dH/dt is the displacement in
the gradient direction

— dH/dt can be recovered by measuringa®d G,. It is
callednormal flow

— but dL/dt cannot be recovered, since<0
— this is called the aperture problem
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Aperture problem
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Recovering u and v
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= Solvefor u and v separately, ignoring their coupling through 2-D

motion
- u=-G/G,
- v=-G/G,

= Solve system of linear equations corresponding to motion constraints
in a small image neighborhood
— assume u and v will not vary in that small neighborhood
— requires that neighborhoods have edges with different orientations,
since slope of motion constraint line is determined by image
vgragient
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Recovering u and v
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» If the constraint lines in a neighborhood are nearly parallel
(i.e., the gradient directions are all similar), then the
location of the best fitting (u,v) will be very sensitive to
errorsin estimating gradient directions.

= More generaly, one could fit a parametric model to local
neighborhoods of constraint lines, finding parameters that
bring constraint lines “nearest” to the estimated motion
assigned to each pixel.

— for example, if we assume that the surface we are
viewing in any small image neighborhood is well
approximated by a plane, then the optical flow will be a
guadratic function of image position in that image
neighborhood
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Token and correlation methods
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= Gradient based methods only work when the motion is “small” so that
the derivatives can be reliably computed

— although for “large” motions, once can employ multiresolution
methods

= Tracking algorithms can compute motion when the motion is “large”
— correlation
— feature tracking
= Correlation
— choose a kxk window surrounding a pixel, p, in frame i.
— compare this window against windows in similar positions in
frame i+1
— The window of best match determines the displacement of p from
frame i to frame i+1
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Correlation
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= Correlation

— sum of squared gray level differences
— sum of absolute intensity differences
— “robust” versions of these sensitive to outliers

s Drawbacks of correlation

— matching in the presence of rotation is computationally expensive since &
orientations of the window must be matched in frame i+1
— if motion is not constant in the kxk window then the window will be
distorted by the motion, so simple correlation methods will fail
» this suggests using smaller windows, within which motion will not vary
significantly
» but smaller windows have lesgecificity, leading to matches more sensitive to
noise
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Tracking
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= Apply afeature detector, such as an edge detector, to each
frame of the sequence

— want features to be distinctive

— example: patterns of edges or gray levels that are
dissimilar to their surrounds

— Match these features from frame to frame

— might assume that nearby features move similarly to
help disambiguate matches (but this is not true at
motion boundaries)

— integrate the matching with assumptions about scene
structure - e.g., features are all on a plane moving
rigidly
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Multiresolution methods
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m Consider using edges as features for a tracking algorithm for motion
estimation. What should the scale of the edge detector be?
— small scale
» many edges are detected
» easily confused with one another
» computationally costly matching problem
— coarse scale
» relatively few edges identified
» localized only poorly, so motion estimates have high errors
» simple matching problem
= Multiresolution - process the image over arange of scales, using the
results at coarser scalesto guide the analysis at finer scales

— detect edges at a coarse scale
— estimate motion by tracking

— use these estimates as initial conditions for matching edges at next
finest scale
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Multiresolution methods
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m These are also called focusing methods or scale space
methods

— can also apply to gradient based motion estimators
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3-D motion and optical flow
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= AsSsume a camera moving in a static environment

= Arrigid body motion of the camera can be expressed as a

translation and a rotation about an axis through the origin.
m Let

— t be the translational component of the camera motion

— w be the angular velocity

— r be the column vector [X Y 7]
= Then the velocity of r with respect to the XY Z coordinate

systemis

V=-t+wxr
= Let the components of

— t=[uvw

- w=[ABCJ
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3-D Mation and Optic Flow
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= Rewrite in component form:
X =-U-BZ+CY
Y'=-V-CX+AZ
Z' =-W-AY + BX
where the differentiation is with respect to time

= The optic flow at a point (x,y) is (u,v) where
u=x,x=fX/z
v=y,y=1Y/Z

» Differentiating x and y with respect to time, we obtain
u=X/Z-XZ1Z2=(-U/Z - B + Cy) - X(-W/Z - Ay + Bx)
v=Y'1Z-YZIZ2=(-VIZ-Cx + A) - y(-W/Z - Ay + Bx)
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3-D Mation and Optic Flow
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= These can be written in the form
u=u,+u
V=V ty,
= (u,,v,) denotesthe translational component of the optic flow
= (u,,v,) denotes the rotational component of the optic flow
u, = [-U + xWJ]/zZ
v, =[-V +yW]/Z
u, = Axy - B(x2 +1) + Cy
v, =A(y?+1) - Bxy - Cx
= Noticethat the rotational part isindependent of Z - it just depends on
the image location of a point

= S0, al information about the structure of the scene is revealed through
the tranglational component
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M osaicing from arotating camera
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s |f wetake a cameraand rotateit, we can combine all of the

? i
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Special case of aplanein motion
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= Suppose we are looking at a plane while the camera moves
- Z=Zy+pX+qY
= Then for any point on this plane
— Z-pX-qY =4
- 1-pX/2)-p(YIZ)=2Zyz
— 1/Z =[1-pXIZ - qY/Z)IZ, = [1- px - qyl/Z,
= S0, we can rewrite the translational components of motion for a plane
as:
U = [-U + XW][1- px - qyl/Z, = [-U/Z, + XWIZ,] [1- px - qy]
Vi = [V +yW][1- px - ayl/iZ,= [-VIZ, + XWIZ] [1- px - qy]
= These are quadratic equations in x and y

= So, if we can compute the translational component of the optic flow at
“enough” points from a planar surface, then we can recover the
translational motion (with unknown scaling) and the orientation of the

Time-varying irpa!gler;galgg-lgeg viewed.
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Pure translation
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= When cameramotion is only trandation, then we have
u=[-U + xW]/z
v=[-V +yW]/Z
= Consider the special point (u,v) = (U/W, V/W).
— This is the “image” of the velocity vector onto the image plane

— The motion at this point must be 0 since the surface point along
this ray stays on the ray as the camera moves (also our equations
evaluate to 0 at (U/W, V/W))

= Consider the line connecting any other (x,y) to (x, %y u V)
— The slope of this line isAg, = [x-u]/[y-v]
— So, the line must pass through (u, v)

= All of the optic flow vectors are concurrent, and pass through the
special point (u,v) which is called tHecus of expansion
(contraction)
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Pure translation
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= Another way to look at it

— LetAt =1, so that the image center at time t moves from (0,0,0) to
(U,V,W) at time t+1

— Think of the two images as a stereo pair

— The location of the projection of (U,V,W), the lens center at time
t+1 (the “right” image), in the image at time t (the left image) is at
location (U/W, VIW) = (u,v)

— All conjugate lines at time t must pass through this point

— So, given a point (x,y) at time t, the location of its corresponding
point at time t+1 in theriginal coordinate system must line on the
line connecting (x,y) to (u,v)

= So, if we know the optic flow at two points in the case of pure
translation, we can find the focus of expansion

— in practice want more than two points
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Pure translation
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= Can we recover the third component of motion, W?

= No, because the same optic flow field can be generated by
two similar surfaces undergoing similar motions (U,V and
W always occur in ratio with Z).
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Normal flows and camera motion estimation
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= |If we can compute optic flow at a point, then the foe is constrained to
lie on the extension of the optic flow vector

= But the aperture problem makes it difficult to compute optic flow
without making assumptions of smoothness or surface order

= Normal flow (the component of flow in the gradient direction) can be
locally computed at a pixel without such assumptions

s Canwerecover camera motion from normal flow?

\
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|dentifying the FOE from normal flow
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= Assume that the foe is within the field of view of the camera
m For each point, p, intheimage
For each normal flow vector, n,
If p lies in the “correct” halfplane af, then score a vote for p
The FOE is the centroid of the connected component of highest scoring
points (might be a single pixel, but ordinarily will not be).
= Alternative code - maintain an array of counters in register with the
image
For each normal flow vectar,
Increment the counters corresponding to all pixels in the “correct”
halfplane oin
Search the array of counters for the connected component of highest
vote count
= For an image containing N normal flow vectors and mxm pixels, both
algorithms are (&N), but (2) is more efficient
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|dentifying the FOE from normal flow
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= What if the FOE is outside the field of view of the camera?
= The image plane is a bad place to represent the FOE to begin with
— FOE indicates the direction of translational motion
— Pixels in a perspective projection image do not correspond to equal
angular samples of directions
» in the periphery, a pixel corresponds to a wide range of directions
— Solution - represent the array of accumulators as a sphere, with an
equiangular sampling of the surface of the sphere

» Each normal vector will then cast votes for all samples in a hemisphere

» Simple mathematical relationship between the spherical coordinate system of
the array of counters, and the image coordinate system

iz
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Structure from motion

1 | 0 I | || [l

= |f we can compute the 3D motion parameters of an image
sequence then we can compute the (scaled) range to visible
points in the scene
— So, if the camera motion is a simple translation, then
the Z coordinate of a point is inversely proportional to
the length of the optical flow vector - just like disparity
for stereo.

= Practical problems

— motion is not simple translation, but also includes

rotation
» small rotations about the y axis are easy to confuse with translations
in x
— computing optical flow more difficult than normal flow
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Structure from motion
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= More practical problems

— discontinuities in range

» optical flow algorithms integrate information over small image
neighborhoods. If those neighborhoods overlap a boundary
between an object and the background, then the assumptions
on which the algorithm is based (e.g., planar surface) are
violated and the result will be wrong.

— Independently moving objects

» will confuse the algorithms that estimate 3D motion parameters
because their motion is inconsistent with the rigid camera
motion
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Structure from motion
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Structure from motion
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A regularization approach
... 1 | 1§ I | | Ioffil

= Many vision problems such as stereo reconstruction of visible surfaces and
recovery of optic flow are instances of ill posed problems.

= A problemiswell posed when its solution:
— exists
— is unique, and
— depends continuously on its initial data
= Any problem that is not well posed is said to be ill posed

m  The optic flow problem is to recover both degress of freedom of motion at
each image pixel, given the spatial and temporal derivatives of the image
sequence

— but any solution chosen at each pixel that locally satisfies the motion
constraint equation can be used to construct an optic flow field consistent
with the derivatives measured

— therefore, the solution is not unique - how to choose one?
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A regularization approach
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= Solution - add a priori knowledge that can choose between the solutions
s Formally, suppose we have an ill posed problem of determining z from data y
expressed as
— Az =y, where A is a linear operator (e.g., projection operation in image
formation)
= We must choose a quadratic norm || || and a so-called stabilizing functional ||
Pz || and then find the z that minimizes:
= |IAzZ-yIF + A |[Pzf
— A controls the compromise between the degree of regularization and the
closeness of the solution to the input data (the first term).

= T.Poggio, V. Torre and C. Koch, Computational vision and regularization
theory,Nature, 317, 1984.
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A regularization approach
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m  For optic flow:

the firsttermis dwdt I/ x+dyidt 11 y+ v tp= [dI/dt]?
» this should, ideally, be zero according to the theory
the second term enforces a smoothness constraint on the optic flow field :
=(u xP+( v xXP+( u yR+( v ypP
The regularization problem is then to find a flow field that minimiz¢dl/dt] 2 +
A edxdy

This minimization can be done over the entire image using various iterative
techniques
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