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Time varying image analysis

■ Motion detection

■ Motion estimation

■ Egomotion and structure from motion
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The problems

■ Visual surveillance

– stationary camera watches a workspace -find moving
objects and alert an  operator

– moving camera navigates a workspace - find moving
objects and alert an operator

■ Image coding

– use image motion to perform more efficient coding of
images

■ Navigation

– camera moves through the world - estimate its trajectory
» use this to remove unwanted jitter from image sequence - image

stabilization and mosaicking

» use this to control the movement of a robot through the world
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Motion detection

■ Frame differencing

– subtract, on a pixel by pixel basis, consecutive frames in a
motion sequence

– high differences indicate change between the frames due to
either motion or changes in illumination

■ Problems

– noise in images can give high differences where there is no
motion

» compare neighborhoods rather than points

– as objects move, their homogeneous interiors don’t result in
changing image intensities over short time periods

» motion detected only at boundaries

» requires subsequent grouping of moving pixels into objects
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Motion detection

■ Background subtraction

– create an image of the stationary background by averaging a long
sequence

» for any pixel, most measurements will be from the background

» computing the median measurements, for example, at each pixel, will with
high probability assign that pixel the true background intensity - fixed
threshold on differencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture of
Gaussians to set of intensities and assuming large population is the
background - adaptive thresholding to find foreground pixels

– difference a frame from the known background frame
» even for interior points of homogeneous objects, likely to detect a difference

» this will also detect objects that are stationary but different from the
background

» typical algorithm used in surveillance systems

■ Motion detection algorithms such as these only work if the camera is
stationary and objects are moving against a fixed background
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Example

Time-varying image analysis- 6 Larry Davis

Example
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Motion estimation - optic flow

■ Optic flow is the 2-D velocity field induced in an
image  due to the projection of moving objects onto
the image plane

■ Three prevalent approaches to computing optic flow:

– token matching or correlation
» extract features from each frame (gray level windows, edge

detection)

» match them from frame to frame

– gradient techniques
» relate optic flow to spatial and temporal image derivatives

– velocity sensitive filters
» frequency domain models of motion estimation
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A 1-d gradient technique

■ Suppose we have a 1-D image that changes over time due to a
translation of the image

■ Suppose we also assume that the image function  is, at least over small
neighborhoods, well approximated by a linear function.

– completely characterized by its value and slope

■ Can we estimate the motion of the image by comparing its spatial
derivative at a point to its temporal derivative?

– example: spatial derivative is 10 units/pixel and temporal
derivative is 20 units/frame

– then motion is (20 units/frame) / (10 units/pixel) = 2 pixels/frame

x

I(x)
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Gradient techniques

■ Assume I(x,y,t) is a continuous and differentiable
function of space and time

■ Suppose the brightness pattern is locally displaced
by a distance dx, dy over time period dt.

– this means that as the time varying image
evolves, the image brightness of points don’t
change (except for digital sampling effects) as
they move in the image

– I(x,y,t) = I(x + dx, y + dy, t + dt)
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Gradient techniques

■ We expand I in a Taylor series about (x,y,t) to obtain

+ higher order terms

– valid only if temporal change is due entirely to motion

■ Can rewrite this as dI/dt = Gxu + Gyv + Gt = 0.  The G’s are derivatives
measured from the image sequence, and u and v are the unknown optic
flow components in the x and y directions, respectively
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Motion constraint line

■ So, the spatial and temporal derivatives at a point in the
image only provide a linear constraint on the optic flow

Gxu + Gyv + Gt = 0

u

v
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Motion constraint line

■ If Gx and Gy are small, then motion
information cannot be accurately
determined

– places in the image where the gray level
is almost constant are difficult places to
estimate motion

» Gt will also be small in these places

■ If Gx = 0, then -Gt = Gyv, so that v is
determined, but u is unknown

– If Gx = 0, we have a horizontal edge, so
we can’t measure its motion along the
edge

Gxu + Gyv + Gt = 0

i

i+1
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Motion constraint line

■ If H and L denote the gradient and level directions at a
pixel then

– H = tan-1 Gy/Gx

– L is perpendicular to H

– GL = 0

■ Then Gt = -GHdH/dt, where dH/dt is the displacement in
the gradient direction

– dH/dt can be recovered by measuring Gt  and GH. It is
called normal flow

– but dL/dt cannot be recovered, since GL = 0

– this is called the aperture problem
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Aperture problem
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Recovering u and v

■ Solve for u and v separately, ignoring their coupling through 2-D
motion

– u = -Gt/Gx

– v = -Gt/Gy

■ Solve system of linear equations corresponding to motion constraints
in a small image neighborhood

– assume u and v will not vary in that small neighborhood

– requires that neighborhoods have edges with different orientations,
since slope of motion constraint line is determined by image
gradientv

u
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Recovering u and v

■ If the constraint lines in a neighborhood are nearly parallel
(i.e., the gradient directions are all similar), then the
location of the best fitting (u,v) will be very sensitive to
errors in estimating gradient directions.

■ More generally, one could fit a parametric model to local
neighborhoods of constraint lines, finding parameters that
bring constraint lines “nearest” to the estimated motion
assigned to each pixel.

– for example, if we assume that the surface we are
viewing in any small image neighborhood is well
approximated by a plane, then the optical flow will be a
quadratic function of image position in that image
neighborhood
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Token and correlation methods

■ Gradient based methods only work when the motion is “small” so that
the derivatives can be reliably computed

– although for “large” motions, once can employ multiresolution
methods

■ Tracking algorithms can compute motion when the motion is “large”

– correlation

– feature tracking

■ Correlation

– choose a kxk window surrounding a pixel, p,  in frame i.

– compare this window against windows in similar positions in
frame i+1

– The window of best match determines the displacement of p from
frame i to frame i+1
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Correlation

■ Correlation
– sum of squared gray level differences

– sum of absolute intensity differences

– “robust” versions of these sensitive to outliers

■ Drawbacks of correlation
– matching in the presence of rotation is computationally expensive since all

orientations of the window must be matched in frame i+1

– if motion is not constant in the kxk window then the window will be
distorted by the motion, so simple correlation methods will fail

» this suggests using smaller windows, within which motion will not vary
significantly

» but smaller windows have less specificity, leading to matches more sensitive to
noise



Time-varying image analysis- 19 Larry Davis

Tracking

■ Apply a feature detector, such as an edge detector, to each
frame of the sequence

– want features to be distinctive

– example: patterns of edges or gray levels that are
dissimilar to their surrounds

– Match these features from frame to frame

– might assume that nearby features move similarly to
help disambiguate matches (but this is not true at
motion boundaries)

– integrate the matching with assumptions about scene
structure - e.g., features are all on a plane moving
rigidly
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Multiresolution methods

■ Consider using edges as features for a tracking algorithm for motion
estimation.  What should the scale of the edge detector be?

– small scale
» many edges are detected

» easily confused with one another

» computationally costly matching problem

– coarse scale
» relatively few edges identified

» localized only poorly, so motion estimates have high errors

» simple matching problem

■ Multiresolution - process the image over a range of scales, using the
results at coarser scales to guide the analysis at finer scales

– detect edges at a coarse scale

– estimate motion by tracking

– use these estimates as initial conditions for matching edges at next
finest scale
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Multiresolution methods

■ These are also called focusing methods or scale space
methods

– can also apply to gradient based motion estimators
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3-D motion and optical flow

■ Assume a camera moving in a static environment

■ A rigid body motion of the camera can be expressed as a
translation and a rotation about an axis through the origin.

■ Let
– t  be the translational component of the camera motion

–  ω be the angular velocity

– r be the column vector [X Y Z] T

■ Then the velocity of r with respect to the XYZ coordinate
system is
V = -t + ω x r

■ Let the components of

–  t  = [U V W]T

–  w = [A B C]T
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3-D Motion and Optic Flow

■ Rewrite in component form:

X’ = -U - BZ + CY

Y’ = -V - CX + AZ

Z’ = -W - AY + BX

where the differentiation is with respect to time

■ The optic flow at a point (x,y) is (u,v) where

u = x’, x = fX/Z

v = y’, y = fY/Z

■ Differentiating x and y with respect to time, we obtain

u = X’/Z - XZ’/Z 2 = (-U/Z - B + Cy) - x(-W/Z - Ay + Bx)

v = Y’/Z - YZ’/Z 2 = (-V/Z - Cx + A) - y(-W/Z - Ay + Bx)
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3-D Motion and Optic Flow

■ These can be written in the form

u = ut + ur

v = vt + vr

■ (ut ,vt ) denotes the translational component of the optic flow

■ (ur ,vr ) denotes the rotational component of the optic flow

ut = [-U + xW]/Z

vt = [-V + yW]/Z

ur = Axy - B(x2 +1) + Cy

vr = A(y2 + 1) - Bxy - Cx

■ Notice that the rotational part is independent of Z  - it just depends on
the image location of a point

■ So, all information about the structure of the scene is revealed through
the translational component
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Mosaicing from a rotating camera

■ If we take a camera and rotate it, we can combine all of the
images into a panoramic mosaic
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Special case of a plane in motion

■ Suppose we are looking at a plane while the camera moves

– Z = Z0 + pX + qY

■ Then for any point on this plane

– Z - pX - qY = Z0

– 1 - p(X/Z) - p(Y/Z) = Z0/Z

– 1/Z = [1-pX/Z - qY/Z]/Z0 = [1- px - qy]/Z0

■ So, we can rewrite the translational components of motion for a plane
as:

ut = [-U + xW][1- px - qy]/Z0 = [-U/Z0 + xW/Z0] [1- px - qy]

vt = [-V +yW][1- px - qy]/Z0 = [-V/Z0 + xW/Z0] [1- px - qy]

■ These are quadratic equations in x and y

■ So, if we can compute the translational component of the optic flow at
“enough” points from a planar surface, then we can recover the
translational motion (with unknown scaling) and the orientation of the
plane being viewed.
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Pure translation

■ When camera motion is only translation, then we have

ut= [-U + xW]/Z

vt= [-V + yW]/Z

■ Consider the special point (u,v) = (U/W, V/W).

– This is the “image” of the velocity vector onto the image plane

– The motion at this point must be 0 since the surface point along
this ray stays on the ray as the camera moves (also our equations
evaluate to 0 at (U/W, V/W))

■ Consider the line connecting any other (x,y) to (x + ut, y + vt)

– The slope of this line is vt/ut = [x-u]/[y-v]

– So, the line must pass through (u, v)

■ All of the optic flow vectors are concurrent, and pass through the
special point (u,v) which is called the  focus of expansion
(contraction)
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Pure translation

■ Another way to look at it

– Let ∆t = 1, so that the image center at time t moves from (0,0,0) to
(U,V,W) at time t+1

– Think of the two images as a stereo pair

– The location  of the projection of  (U,V,W), the lens center at time
t+1 (the “right” image), in the image at time t (the left image) is at
location (U/W, V/W) = (u,v)

– All conjugate lines at time t must pass through this point

– So, given a point (x,y) at time t, the location of its corresponding
point at time t+1 in the original coordinate system must line on the
line connecting (x,y) to (u,v)

■ So, if we know the optic flow at two points in the case of pure
translation, we can find the focus of expansion

– in practice want more than two points



Time-varying image analysis- 29 Larry Davis

Pure translation

■ Can we recover the third component of motion, W?

■ No, because the same optic flow field can be generated by
two similar surfaces undergoing similar motions (U,V and
W always occur in ratio with Z).
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Normal flows and camera motion estimation

■ If we can compute optic flow at a point, then the foe is constrained to
lie on the extension of the optic flow vector

■ But the aperture problem makes it difficult to compute optic flow
without making assumptions of smoothness or surface order

■ Normal flow (the component of flow in the gradient direction) can be
locally computed at a pixel without such assumptions

■ Can we recover camera motion from normal flow?
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Identifying the FOE from normal flow

■ Assume that the foe is within the field of view of the camera

■ For each point, p,  in the image

For each normal flow vector, n,

If p lies in the “correct” halfplane of n, then score a vote for p

    The FOE is the centroid of the connected component of highest scoring
points (might be a single pixel, but ordinarily will not be).

■ Alternative code - maintain an array of counters in register with the
image

For each normal flow vector,n,

Increment the counters corresponding to all pixels in the “correct”
halfplane of n

Search the array of counters for the connected component of highest
vote count

■ For an image containing N normal flow vectors and mxm pixels, both
algorithms are (m2N), but (2) is more efficient
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Identifying the FOE from normal flow

■ What if the FOE is outside the field of view of the camera?

■ The image plane is a bad place to represent the FOE to begin with

– FOE indicates the direction of translational motion

– Pixels in a perspective projection image do not correspond to equal
angular samples of directions

» in the periphery, a pixel corresponds to a wide range of directions

– Solution - represent the array of accumulators as a sphere, with an
equiangular sampling of the surface of the sphere

» Each normal vector will then cast votes for all samples in a hemisphere

» Simple mathematical relationship between the spherical coordinate system of
the array of counters, and the image coordinate system
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Structure from motion

■ If we can compute the 3D motion parameters of an image
sequence then we can compute the (scaled) range to visible
points in the scene

– So, if the camera motion is a simple translation, then
the Z coordinate of a point is inversely proportional to
the length of the optical flow vector - just like disparity
for stereo.

■ Practical problems

– motion is not simple translation, but also includes
rotation

» small rotations about the y axis are easy to confuse with translations
in x

– computing optical flow more difficult than normal flow
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Structure from motion

■ More practical problems

– discontinuities in range
» optical flow algorithms integrate information over small image

neighborhoods.  If those neighborhoods overlap a boundary
between an object and the background, then the assumptions
on which the algorithm is based (e.g., planar surface) are
violated and the result will be wrong.

– Independently moving objects
» will confuse the algorithms that estimate 3D motion parameters

because their motion is inconsistent with the rigid camera
motion
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Structure from motion
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Structure from motion
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A regularization approach

■ Many vision problems such as stereo reconstruction of visible surfaces and
recovery of optic flow are instances of ill posed problems.

■ A problem is well posed when its solution:

– exists

– is unique, and

– depends continuously on its initial data

■ Any problem that is not well posed is said to be ill posed

■ The optic flow problem is to recover both degress of freedom of motion at
each image pixel, given the spatial and temporal derivatives of the image
sequence

– but any solution chosen at each pixel that locally satisfies the motion
constraint equation can be used to construct an optic flow field consistent
with the derivatives measured

– therefore, the solution is not unique - how to choose one?
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A regularization approach

■ Solution - add a priori knowledge that can choose between the solutions

■ Formally, suppose we have an ill posed problem of determining z from data y
expressed as

– Az = y, where A is a linear operator (e.g., projection operation in image
formation)

■ We must choose a quadratic norm  || || and a so-called stabilizing functional ||
Pz || and then find the z that minimizes:

– ||Az-y||2 + λ ||Pz||2

–  λ controls the compromise between the degree of regularization and the
closeness of the solution to the input data (the first term).

■ T. Poggio, V. Torre and C. Koch, Computational vision and regularization
theory, Nature, 317, 1984.
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A regularization approach

■ For optic flow:

– the first term is  [dx/dt I/ x +dy/dt I/ y + I/ t]2 = [dI/dt]2

» this should, ideally, be zero according to the theory

– the second term enforces a smoothness constraint on the optic flow field :ε
= ( u/ x)2 + ( v/ x)2 + ( u/ y)2 + ( v/ y)2

– The regularization problem is then to find a flow field that minimizes [dI/dt] 2 +
λ ε dx dy

– This minimization can be done over the entire image  using various iterative
techniques
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