Edge and local feature detection

1 Gradient based edge detection
1 Edge detection by function fitting
1 Second derivative edge detectors

1 Edge linking and the construction of the chain
graph
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|mportance of edge detection in computer
vision

1 Information reduction

" replace image by a cartoon in which objects and surface
markings are outlined

11 these are the most informative parts of the image
1 Biological plausibility
0 initial stages of mammalian vision systems involve
detection of edges and local features
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1-D edge detection

1 Anideal edgeisastep function
1(x)

I'(x)

Edge and local feature detection - 3 Larry Davis

1-D edge detection

I"(x)

0 Thefirst derivative of 1(x) has apeak at the edge

11 The second derivative of 1(x) hasazero crossing
at the edge
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1-D edge detection

1 Morerealistically, image edges are blurred and
the regions that meet at those edges have noise or
variationsin intensity.

0 blur - high first derivatives near edges
1 noise - high first derivatives within regions that meet at
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Edge detection in 2-D

0 Let f(x,y) betheimage intensity function. It has derivativesin
all directions
0 thegradient isavector whose first component is the direction in which
the first derivative is highest, and whose second component is the
magnitude of the first derivative in that direction.
0 If fis continuous and differentiable, then its gradient can be
determined from the directional derivativesin any two

orthogonal directions - standard to use x and y

1 magnitude = [(%)%(Z—fyf]“

of
tanl(aféy)
X
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Edge detection in 2-D

1 With adigital image, the partial derivatives
are replaced by finite differences:
0 Af =1(xy) - f(x-1,y)
0 Af =1(xy) - f(x, y-1)
0 Alternatives are:
0 A, f =f(x+1y) - f(x-1y)
0 Ay f =1f(x,y+1) - f(x,y-1)
- Robert’s gradient °!
0 Af =f(x+1y+1) - f(Xy)
0 Af=f(xy+1) - f(x+1,y)
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Edge detection in 2-D

1 How do we combine the directional derivatives to
compute the gradient magnitude?

01 use the root mean square (RMS) as in the continuous case
01 take the maximum absolute value of the directional derivatives

Edge and local feature detection - 8

Larry Davis




Combining smoothing and differentiation -
fixed scale

1 Local operators like the Roberts give high
responses to any intensity variation
1 local surface texture
0 If the picture is first smoothed by an averaging
process, then these local variations are removed
and what remains are the “prominent” edges
1 smoothing is blurring, and details are removed

1 Exam p|esz2(x,y) = V4[f(x,y) + f(x+1y) + f(x,y+1) + f(x+1y+1)]
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Smoothing - basic problems

1 What function should be used to smooth or
average the image before differentiation?
1 box filters or uniform smoothing

- easy to compute

o for large smoothing neighborhoods assigns too much weight to
points far from an edge

1 Gaussian, or exponential, smoothing

2 2o 2
(27mo)e *” HY)20

Edge and local feature detection - 10 Larry Davis




Smoothing and convolution

1 The convolution of two functions, f(x) and g(x) is
definedas
h(x) = [g(X)f(x =X )dx =g(x) Of(x)
 When the functions f and g are discrete and when
g isnonzero only over afinite range [-n,n] then
thisintegral isreplaced by the following
summation:

i)=Y et T

j=n
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Example of 1-d convolution

1 2 3 4 5 6

f |8|7|8|22|2:«112|1o| 11| 9| 5|6|4|

g 113 |1|3| 5|3| 1|

aEEEER

HEEEE
v lefarlad | L[ L]
h(4) =3 g(j)f(4+])

j=2

=9(-2)f(9+9(-Df(3)+9(0)f (4 +9() f(9 +9(2) f(6)
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Smoothing and convolution

11 Theseintegrals and summations extend simply to
functions of two variables:

h(.)= F00)0= 3 Y otk fi+kj+)

k=-nl=-n

1 Convolution computes the weighted sum of the gray
levels in each nxn neighborhood of the image, f, using
the matrix of weights g.

11 Convolution is aso-caled linear operator because
0 g*(af, + bf;) = a(g*f,) + b(g*f,)
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2-D convolution

h(5,5) = i S (k) F(B+k5+1)

= g(-L-1) F(4,4) + g(-L0)f (4,5) + g(-11) f (4 4)
+g(0,-1)f(5,4) +g(0,0)f(55)+ g(0,1) f(5,6)
+gL-D 1 (6:4)+g(LO)T (6,5 + gL (6,6)
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Smoothing and convolution

4.2. LINEAR SYSTEMS 117
A|B| CJ B L
A==l
D|E)\F P\ Bs | Pe hli ]
ARG S———— Li,J
G|H|I ™
it —
R
L]

h[i,j]:Ap1+Bp2+CP3+DP4+EP5+FPG+GP7+HP8—IP9
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Gaussian smoothing

1 Advantages of Gaussian filtering
11 rotationally symmetric (for large filters)
0 filter weights decrease monotonically from central
peak, giving most weight to central pixels
1 Simple and intuitive relationship between size of o and
size of objects whose edges will be detected in image.

1 The gaussian is separable:
G0 NS S
e 20'2 =e 20'2 De 20'2
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Advantage of seperability

1 First convolve the image with a one dimensional
horizontal filter

1 Then convolve the result of the first convolution
with aone dimensiona vertical filter

1 For akxk Gaussian filter, 2D convolution requires

k2 operations per pixel
1 But using the separable filters, we reduce thisto
2k operations per pixel.
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Separability
2 313 11
5 18
6 18
65
112 1|1 2 313 =2+6+3=11
2 |4 |2 3 |55 =6+20+10=36
1(2(1] |4 |alse =4+8+6=18

65
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Advantages of Gaussians

1 Convolution of a Gaussian with itsdlf is another
Gaussian
1 so we can first smooth an image with a small Gaussian

11 then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to smoother
the original image with alarger Gaussian.

0 If we smooth an image with a Gaussian having sd o
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation
(20-)112
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Combining smoothing and differentiation -
fixed scale

1 Non-maxima supression - Retain a point as an
edge point if:
[ its gradient magnitude is higher than a threshold

11 its gradient magnitude is alocal maximain the gradient
direction
simple thresholding will
compute thick edges
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Summary of basic edge detection steps

1 Smooth the image to reduce the effects of local
intensity variations
1 choice of smoothing operator practically important
1 Differentiate the smoothed image using a digital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel

1 Threshold the gradient magnitude to eliminate low
contrast edges
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Summary of basic edge detection steps

1 Apply a nonmaxima suppression step to thin the
edgesto single pixel wide edges
71 the smoothing will produce an image in which the

contrast at an edge is spread out in the neighborhood of
the edge

1 thresholding operation will produce thick edges
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The scale-space problem

11 Usually, any single choice of o does not produce a good
edge map
0 alarge o will produce edges form only the largest objects, and

they will not accurately delineate the object because the
smoothing reduces shape detail

0 asmall o will produce many edges and very jagged boundaries of
many objects.
11 Scale-space approaches
[ detect edges at arange of scales[o,, 0,

1 combine the resulting edge maps

0 trace edges detected using large o down through scale space to obtain more
curate spafial localization.
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Examples

Gear image 3x3 Gradient magnitude
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Medium threshold
High threshold edium fresho
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low threshold

Edge and local feature detection - 26 Larry Davis




Smoothed 5x5 Gaussian 3x3 gradient magnitude
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Examples
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smoothed 15x15 Gaussian 3x3 gradient magnitude
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Examples
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L aplacian edge detectors

1 Directional second derivativein direction of gradient has a
zero crossing at gradient maxima

1 Can “approximate” directional second derivative with

Laplacian
62/ + 9%
ox* ay*

0 Its digital approximation is
0 Oef(x,y) = [f(x+1y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4
f(x,y)

1
-4
1

[l o]
O r O

= [f(x+1y) - Y] - [f(x.y) - f(x-1L.y)¥
[ y+1)-fxy)] - [f(x.y) - f(x.y-1)]
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L aplacian edge detectors

1 Laplacians are also combined with smoothing for
edge detectors
1 Take the Laplacian of a Gaussian smoothed image -

called the Mexican Hat operator or DoG (Difference of
Gaussians)

1 Locate the zero-crossing of the operator

0 these are pixels whose DoG is positive and which have
neighbor’s whose DoG is negative or zero

1 Usually, measure the gradient or directional first
derivatives at these points to eliminate low contrast
edges.
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Laplacian of Gaussian or “Mexican Hat”
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Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of Zero crossings
Gaussian
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Laplacian of Gaussian

13 x 13 Mexican hat zero crossings
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Edge linking and following

1 Group edge pixels into chains and chains into
large pieces of object boundary.

1 can use the shapes of long edge chainsin recognition
0 slopes
0 curvature
0 corners

Edge and local feature detection - 36 Larry Davis




Edge linking and following

[ Basic steps
11 thin connected components of edges to one pixel thick
0 find simply connected paths

1 link them at cornersinto a graph model of image
contours
o optionally introduce additional corners on interiors of ssimple
paths
1 compute local and global properties of contours and
corners
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Thinning

11 Consider a 3x3 neighborhood of a binary image in which
the center pixel is “1”

01 the center point isa simple point if changing it fromaltoaO
does not change the number of connected component of the 3x3
neighborhood.

111 000
011 111
010 000
01 the first is 8-simple but not 4-simple

0 the second is neither 4 nor 8 simple
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Thinning

1 Removal of asimple point will not change the
number of connected componentsin abinary
image

1 Anend point is a1 with exactly one 1-neighbor
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Thinning

0 A 1-pixe (i,)) inabinary imageisaNorth border point if
pixel (i,j+1) isaO.
0 similarly define East, West and South border points.

. o ] 0000000
1 Simple thinning algorithm 0111100
0 For D = N,E,W,Sdo 0000000
Eliminate all D border points that are simple points and NOT end

points

1 Must do the directions in sequence and not together or we
could erase a component

1 Result depends on the order in which the directions are
considered
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Example - 4 simple points

00000000
01011100
01011001
01111111
01111110
01100110
00000000

00000000
01001100
01011001
01011011
01111110
01100110
00000000

W

00000000
01001100
01001001
01001011
01111110
00100010
00000000
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00000000
01001100
01011001
01010011
01111110
01000100
00000000
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Finding simply connected chains

1 Goal: create agraph structured representation
(chain graph) of the image contours
1 vertex for each junction in the image

1 edge connecting vertices corresponding to junctions
that are connected by achain; edge labeled with chain
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Creating the chain graph

0 Algorithm: given binary image, E, of thinned
edges
[ create abinary image, J, of junctions and end points

0 pointsin E that are 1 and have more than two neighbors that
are 1 or exactly one neighbor that isa 1

11 create the image E-J = C(chains)

o thisimage contains the chains of E, but they are broken at
junctions
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Creating the chain graph

1 Perform a connected component analysis of C. For each
component storein atable T:
0 itsend points (0 or 2)
0 thelist of coordinates joining its end points
1 For each point in J:
0 create anode in the chain graph , G, with a unique label
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Creating the chain graph

1 For each chanin C

0 if that chainis aclosed loop (has no end points)
o choose one point from the chain randomly and create a new
node in G corresponding to that point
o mark that point as a “loop junction” to distinguish it from other
junctions
o create an edge in G connecting this new node to itself, and
mark that edge with the name of the chain loop
1 if that chain is not a closed loop, then it has two end
points
0 create an edge in G linking the two points from J adjacent to
its end points
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Creating the chain graph

1 Data structure for creating the chain graph

1 Biggest problem is determining for each open
chainin C the pointsin Jthat are adjacent to its
end points
1 create image J in which all 1's are marked with their
unique labels.

0 For each chainin C
0 Examine the 3x3 neighborhood of each end point of CinJ

o Find the name of the junction or end point adjacent to that end
point from this 3x3 neighborhood.
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Finding internal “corners” of chains

11 Chains are only broken at junctions

1 but important features of the chain might occur at
internal points

1 example: closed loop corresponding to a square - would
like to find the natural corners of the square and add
them as junctions to the chain graph (splitting the
chains at those natural corners)

1 Curve segmentation

1 similar to image segmentation, but in a 1-D form
o local methods, like edge detectors
0 globa methods, like region anayzers
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Local methods of curve segmentation

1 Natural locations to segment contours are points where the
slope of the curveis changing quickly
1 these correspond, perceptually, to “corners” of the curve.

1 To measure the change in slope we are measuring the
curvature of the curve
1 straight line has 0 curvature
1 circular arc has constant curvature corresponding to 1/r

1 Can estimate curvature by fitting a simple function (circular at
guadratic function, cubic function) to each neighborhood of a
chain, and using the parameters of the fit to estimate the
curvature at the center of the neighborhood.
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Formulae for curvature

1 Consider moving a point, P, along a curve.

0 Let T be the unit tangent vector as P moves
o T has constant length (1)

o but the direction of T, ¢, changes from point to point unless the
curveisastraight line

o measure this direction as the angle between T and the x-axis
T=dR/ds, s distance along curve

P /\®
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Formulae for curvature

1 The curvature, K, is the instantaneous rate of
change of ¢ with respect to s, distance along the
curve

0 K=dg/ds
0 ds=[dx2 + dy?] V2
0 @= tanldy/dx

T=dR/ds, s distance along curve
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Formulae for curvature

o Now d%y

2

dgl dx =— %
1+()?

dx

_/ _ay 2
and ds/dx = 1+(dx)
d2y
de/dx _ dx?

K =dg/ds=

0 ds/dx dy,2,3/2
1+ (%
[ (dx) ]

Edge and local feature detection - 51

Larry Davis

Example - circle

1 For the circle
0 s=ab
0 @e=0+T12
1 soK = dg/ds=dB/adb = 1/a

dAN
\_
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L ocal methods of curve segmentation

[ There are also awide variety of heuristic methods
to estimate curvature-like local properties
1 For each point, p, along the curve

0 Find the points k pixels before and after p on the curve
(p**, p¥) and then measure
0 the angle between pp* and pp™
0 theratio s/t
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L ocal methods of curve segmentation

0 Similar problems to edge detection
1 what isthe appropriate size for k?

11 how do we combine the curvature estimates at different
scales?

1 boundary problems near the ends of open curves - not
enough pixelsto look out k in both directions
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Back to smoothing functions

11 To smooth an image using a Gaussian filter we must

01 choose an appropriate value for a, which controls how
quickly the Gaussian falls to near zero

0 small o produces filter which drops to near zero quickly - can be
implemented using small digital array of weights

0 large o produces afilter which drops to near zero slowly - will be
implemented using alarger size digital array of weights
01 determine the size weight array needed to adequately
represent that Gaussian

0 choose asize for which the values at the edges of the weight array
are 10% as large as the center weight

0 weight array needs to be of odd size to allow for symmetry
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Gaussian smoothing

11 To smooth an image using a Gaussian filter we must

1 sample the Gaussian by integrating it over the square pixels of
the array of weights and multiplying by the scale factor to obtain
integer weights

/ﬁ‘\\
/ N
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Gaussian smoothing

1 Because we have truncated the Gaussian the weights
will not sum to 1.0 x scale factor

0 in “flat” areas of the image we expect our smoothing filter to

leave the image unchanged

but if the filter weights do not sum to 1.0 x scale factor, it will

either amplify (> 1.0) or de-amplify the image

0 normalize the weight array by dividing each entry by the sum
of the all of the entries

0 convert to integers
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Edge detection by function fitting

1 General approach
1 fit afunction to each neighborhood of the image

1 use the gradient of the function as the digital gradient of
the image neighborhood
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Edge detection by function fitting

1 Example: fit aplane to a 2x2 neighborhood
1 z=ax +by+c; zisgray level - need to determine a,b,c
0 gradient isthen (&2 + b?)12
1 neighborhood points are f(x,y), f(x+1,y), f(x,y+1) and

f(x+1,y+1)
0 Need to minimize 11
E(«’:Lb.C)=ZZ[«?\(XH)+b(y+j)+c-f(><+i.y+j)]2

1=0 |=0
0 Solvethisand similar problems by:

0 differentiating with respect to a,b,c, setting resultsto 0,
and
1 solving for a,b,c in resulting system of equations
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Edge detection by function fitting

E/ a=Z32[a(x+i) + b(y+)) + c - f(x+i,y+))](x+i)
B/ b=232[a(x+) + b(y+j) + ¢ - f(x+i,y+))(y+])
E/  c=2Z32[a(x+i) + b(y+)) + c - f(x+i,y+))]

It is easy to verify that

a=[f(x+1y) + f(x+1y+1) - f(x,y) - f(x,y+1)]/2

b =[f(x,y+1) + f(x+1y+1) - f(x,y) - f(x+1,y)]/2

0 aand b are the x and y partial derivatives

O O 0O O

a= 11 b 11
11 1 -1
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Edge detection by function fitting

1 Could also fit ahigher order surface than a plane

1 with a second order surface we could find the (linear)
combination of pixel values that corresponds to the
higher order derivatives, which can also be used for
edge detection

1 Would ordinarily use a neighborhood larger than
2x2

0 better fit

1 for high degree functions need more points for the fit to
be reliable.
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